精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,动点在抛物线上运动,点轴上的射影为,动点满足.

求动点的轨迹的方程;

过点作互相垂直的直线,分别交曲线于点,记的面积分别为,问:是否为定值?若为定值,求出该定值;若不为定值,请说明理由.

【答案】为定值,.

【解析】

设点,点代入到抛物线中,由,列出相应方程组,求出,进而求出动点的轨迹的方程;

知曲线为抛物线,点为抛物线的焦点,分类讨论当直线的斜率为或不存在时和当直线的斜率存在且不为时的情况,结合韦达定理和点到直线的距离公式判断出为定值,定值为.

解:设点

,且

,得

,代入

,即.

所以曲线的方程为.

知曲线为抛物线,点为抛物线的焦点,

当直线的斜率为或不存在时,均不适合题意.

当直线的斜率存在且不为时,

设直线,与联立消得,.

,且

.

所以.

原点到直线的距离

所以.

同理可求得.

所以.

所以.

因此为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,右顶点为,且离心率为.

1)求椭圆的标准方程;

2)互相平行的两条直线分别过,且直线与椭圆交于两点,直线与椭圆交于两点,若四边形的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某服装店对过去100天其实体店和网店的销售量(单位:件)进行了统计,制成频率分布直方图如下:

1)若将上述频率视为概率,已知该服装店过去100天的销售中,实体店和网店销售量都不低于50件的概率为0.4,求过去100天的销售中,实体店和网店至少有一边销售量不低于50件的天数;

2)若将上述频率视为概率,已知该服装店实体店每天的人工成本为500元,门市成本为1200元,每售出一件利润为50元,求该门市一天获利不低于800元的概率;

3)根据销售量的频率分布直方图,求该服装店网店销售量中位数的估计值(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间[﹣3,5]上随机地取一个数x,若x满足|x|≤m(m>0)的概率为,则m的值等于

A. B. 3 C. 4 D. ﹣2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线与直线垂直.

(1)求函数的极值;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A1A2A3A4A5A64名女志愿者B1B2B3B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.

(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率;

(2)X表示接受乙种心理暗示的女志愿者人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且点在函数的图像上;

1)求数列的通项公式;

2)设数列满足:,求的通项公式;

3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有三张形状、大小、质地完全一致的卡片,在每张卡片上写上012,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令.求:

1所取各值的分布列;

2)随机变量的数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有最大值,且最大值大于.

1)求的取值范围;

2)当时,有两个零点,证明:.

(参考数据:)

查看答案和解析>>

同步练习册答案