【题目】有最大值,且最大值大于.
(1)求的取值范围;
(2)当时,有两个零点,证明:.
(参考数据:)
【答案】(1);(2)证明见解析.
【解析】
(1)求出函数的定义域为,,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;
(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.
(1)函数的定义域为,且.
当时,对任意的,,
此时函数在上为增函数,函数为最大值;
当时,令,得.
当时,,此时函数单调递增;
当时,,此时函数单调递减.
所以,函数在处取得极大值,亦即最大值,
即,解得.
综上所述,实数的取值范围是;
(2)当时,,定义域为,
,当时,;当时,.
所以,函数的单调递增区间为,单调递减区间为.
由于函数有两个零点、且,,
,
构造函数,其中,
,
令,,当时,,
所以,函数在区间上单调递减,则,则.
所以,函数在区间上单调递减,
,,
即,即,
,且,而函数在上为减函数,
所以,,因此,.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点在抛物线上运动,点在轴上的射影为,动点满足.
求动点的轨迹的方程;
过点作互相垂直的直线,,分别交曲线于点,和,,记,的面积分别为,,问:是否为定值?若为定值,求出该定值;若不为定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率.
(1)求图中的值;
(2)估计该校担任班主任的教师月平均通话时长的中位数;
(3)在,这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四棱锥的底面为正方形,底面,则下列结论中正确结论的序号是_________________.
①;②平面;③与平面所成的角等于与平面所成的角;④与所成的角等于与所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆的中心在原点,其左焦点与抛物线的焦点重合,过的直线与椭圆交于、两点,与抛物线交于、两点.当直线与轴垂直时,.
(1)求椭圆的方程;
(2)求的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设是椭圆的左焦点,直线:与轴交于点,为椭圆的长轴,已知,且,过点作斜率为直线与椭圆相交于不同的两点 ,
(1)当时,线段的中点为,过作交轴于点,求;
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线(为参数),在以原点为极点,轴正半轴为极轴的极坐标系中,曲线.
(1)写出的普通方程和的直角坐标方程;
(2)设点在曲线上,点在曲线上,求的最小值及此时点的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年底,湖北省武汉市等多个地区陆续出现感染新型冠状病毒肺炎的患者.为及时有效地对疫情数据进行流行病学统计分析,某地研究机构针对该地实际情况,根据该地患者是否有武汉旅行史与是否有确诊病例接触史,将新冠肺炎患者分为四类:有武汉旅行史(无接触史),无武汉旅行史(无接触史),有武汉旅行史(有接触史)和无武汉旅行史(有接触史),统计得到以下相关数据.
(1)请将列联表填写完整:
有接触史 | 无接触史 | 总计 | |
有武汉旅行史 | 27 | ||
无武汉旅行史 | 18 | ||
总计 | 27 | 54 |
(2)能否在犯错误的概率不超过0.025的前提下认为有武汉旅行史与有确诊病例接触史有关系?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com