精英家教网 > 高中数学 > 题目详情

【题目】如图,设是椭圆的左焦点,直线:轴交于点,为椭圆的长轴,已知,且,过点作斜率为直线与椭圆相交于不同的两点

1)当时,线段的中点为,过轴于点,求

2)求面积的最大值.

【答案】1;(2

【解析】

1)利用椭圆的性质得出椭圆方程,根据题意得出直线的方程,直线的方程,进而得出,由距离公式得出

2)设直线的方程为,当时,,当时,设,直线的方程为,联立,利用韦达定理以及弦长公式,得出,利用三角形面积公式,结合基本不等式,即可得出结论.

1)∵, ,又∵,即

,

∴椭圆的标准方程为

的坐标为,点的坐标为

直线的方程为

联立可得,设

所以

直线的斜率为,直线的方程为

,解得

所以

2)直线的方程为,当时,三角形不存在

时,设,直线的方程为

联立可得,设

,解得

到直线的距离

当且仅当,即时(此时适合于△>0的条件)取等号,

所以当时,直线时,面积取得最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且点在函数的图像上;

1)求数列的通项公式;

2)设数列满足:,求的通项公式;

3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经调查统计,网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的三种商品有购买意向.该淘宝小店推出买一种送5元优惠券的活动.已知某网民购买商品的概率分别为,至少购买一种的概率为,最多购买两种的概率为.假设该网民是否购买这三种商品相互独立.

(1)求该网民分别购买两种商品的概率;

2)用随机变量表示该网民购买商品所享受的优惠券钱数,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有最大值,且最大值大于.

1)求的取值范围;

2)当时,有两个零点,证明:.

(参考数据:)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,给出下列曲线方程:(1;(2;(3;(4,在曲线上存在点满足的所有曲线是(

A.1)(2)(3)(4B.2)(3

C.1)(4D.2)(3)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若函数y=f(f(x)﹣a)﹣1有三个零点,则a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二年级某班的数学课外活动小组有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X表示其中男生的人数.

(1)请列出X的分布列;

(2)根据你所列的分布列求选出的4人中至少有3名男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援,现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.

1)求出易倒伏玉米茎高的中位数

2)根据茎叶图的数据,完成下面的列联表:

抗倒伏

易倒伏

矮茎

高茎

3)根据(2)中的列联表,是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①.的面积,③这三个条件中任选一个,补充在下面问题中,问题中的是否为等边三角形,请说明理由.中,分别为内角的对边,且________,试判断是否为等边三角形?(注:如果选择多个条件分别解答,按第一个解答计分)

查看答案和解析>>

同步练习册答案