精英家教网 > 高中数学 > 题目详情

【题目】如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= AD,

(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.

【答案】
(1)解:由题设知,BF∥CE,

所以∠CED(或其补角)为异面直线BF与DE所成的角.

设P为AD的中点,连接EP,PC.

因为FE=AP,所以FA=EP,同理AB=PC.

又FA⊥平面ABCD,所以EP⊥平面ABCD.

而PC,AD都在平面ABCD内,

故EP⊥PC,EP⊥AD.由AB⊥AD,可得PC⊥AD设FA=a,

则EP=PC=PD=a,CD=DE=EC= ,故∠CED=60°.

所以异面直线BF与DE所成的角的大小为60°


(2)解:证明:因为DC=DE且M为CE的中点,

所以DM⊥CE.连接MP,则MP⊥CE.又MP∩DM=M,

故CE⊥平面AMD.而CE平面CDE,

所以平面AMD⊥平面CDE.


(3)解:解:设Q为CD的中点,连接PQ,EQ.

因为CE=DE,所以EQ⊥CD.因为PC=PD,

所以PQ⊥CD,故∠EQP为二面角A﹣CD﹣E的平面角.

可得,


【解析】(1)先将BF平移到CE,则∠CED(或其补角)为异面直线BF与DE所成的角,在三角形CED中求出此角即可;(2)欲证平面AMD⊥平面CDE,即证CE⊥平面AMD,根据线面垂直的判定定理可知只需证CE与平面AMD内两相交直线垂直即可,易证DM⊥CE,MP⊥CE;(3)设Q为CD的中点,连接PQ,EQ,易证∠EQP为二面角A﹣CD﹣E的平面角,在直角三角形EQP中求出此角即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x2﹣4x+3|,x∈R.
(1)在区间[0,4]上画出函数f(x)的图象;

(2)写出该函数在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是双曲线 =1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知(4+n展开式中的倒数第三项的二项式系数为45.
(1)求n;
(2)求含有x3的项;
(3)求二项式系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义域为R,最小正周期为3π的函数,且在区间(﹣π,2π]上的表达式为f(x)= ,则f(﹣ )+f( )=(
A.
B.﹣
C.1
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:+=1,左右焦点分别为F1 , F2 , 过F1的直线l交椭圆于A,B两点,若AF2+BF2的最大值为5,则椭圆方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,曲线在点处的切线方程为.

(Ⅰ)求实数 的值;

(Ⅱ)若 ,试判断 三者是否有确定的大小关系,并说明理由.

查看答案和解析>>

同步练习册答案