精英家教网 > 高中数学 > 题目详情
7.已知命题p:|2x-3|<1,q:log2(x2-3ax+2a2+2)>1,其中a>0,若q是p的必要不充分条件,求实数a的取值范围.

分析 先解出关于p,q的不等式,结合q是p的必要不充分条件,得到不等式,解出即可.

解答 解:已知命题p:|2x-3|<1,
解不等式得:1<x<2;
由q:log2(x2-3ax+2a2+2)>1,其中a>0,
得:x2-3ax+2a2>0,
解得:x>2a,或x<a
若q是p的必要不充分条件,
则p⇒q,
∴2a<1或a>2,
∴a<$\frac{1}{2}$或a>2.

点评 本题考查了充分必要条件,考查对数函数的性质,绝对值不等式的解法,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知直角三角形ABC的顶点A(5,-1),B(1,1),C(2,m),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知函数f(x)的定义域为[0,4],求f(x2)的定义域.
(2)已知函数y=f(2x-1)的定义域为[-1,1],求实数y=f(x-2)的定义域;
(3)设函数f(x)的定义域为[0,1],求E(x)=f(x+m)+f(x-m)(m>0)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设集合A={x|x-1≥2},B={y|y=ax2-2x+5,x∈R},若A∪B=B,则实数a的取值集合为{a|0$<a≤\frac{1}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=2x-ax为奇函数,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求证:在等差数列中,若Sm=p,Sp=m(m≠p),则Sm+p=-(m+p)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,角α的顶点在坐标原点O,始边在x轴的正半轴,终边与单位圆交于点P(-$\frac{3}{5}$,sinα),且$π<α<\frac{3π}{2}$,角β的顶点在原点O,始边在x轴正半轴,终边OQ落在第二象限,且tanβ=-2,
(1)求tanα;
(2)求tan∠POQ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若等腰△ABC一底角的正弦值为$\frac{1}{3}$,则顶角A的正弦值是$\frac{4\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\left\{\begin{array}{l}{\frac{a}{x-1},x≤0}\\{lgx,x>0}\end{array}\right.$,若关于x的方程f[f(x)]=0仅有一解,则a的取值范围是(-1,0)∪(0,+∞).

查看答案和解析>>

同步练习册答案