精英家教网 > 高中数学 > 题目详情
某一几何体的三视图如图所示,其中圆的半径都为1,则该几何体的体积为
 
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:几何体是球切去两个
1
8
球体,根据球的半径为1,代入球的体积公式计算.
解答: 解:由三视图知:几何体是球切去两个
1
8
球体,
球的半径为1,∴球的体积为
4
3
π×13=
4
3
π,
∴几何体的体积V=
4
3
π×(1-2×
1
8
)=π.
故答案为:π.
点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及结构特征是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若(1-2x)2014=a0+a1x+…+a2014x2014,则
a1
2
+
a2
22
+…+
a2014
22014
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知log2(2m-4)+log2(n-4)=3,则m+n的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m个红球与10-m个白球,盒子B中有10-m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为
 
时,D(ξ)取到最小值.
ξ 0 1 2
P
(10-m)m
100
(10-m)m
100

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
2i
-1+2i
的共轭复数的虚部为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若sin(α+
π
4
)=
2
4
,则sin2α等于(  )
A、
3
4
B、-
3
4
C、
1
2
D、-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是周期为2的奇函数,当0<x<1时,f(x)=lgx,设a=f(
4
3
),b=f(
3
2
),c=f(
5
2
),则(  )
A、a<b<c
B、b<a<c
C、c<b<a
D、c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:

若[x]表示不超过x的最大整数,执行如图所示的程序框图,则输出的S值为(  )
A、4B、5C、7D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=2sin(x-
π
4
)cos(x-
π
4
)+2cos2(x+
π
4
)-1,则函数的最小正周期T和它的图象上的一条对称轴方程分别是(  )
A、T=2π,x=
π
8
B、T=2π,x=
8
C、T=π,x=
π
8
D、T=π,x=
8

查看答案和解析>>

同步练习册答案