精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=lnx-$\frac{(x-1)^{2}}{2}$
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)证明:当x>1时,f(x)<x-1
(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x0)时,恒有f(x)>k(x-1)

分析 (Ⅰ)先求出函数的导数,令导函数大于0,解出即可;
(Ⅱ)构造函数F(x)=f(x)-x+1,先求出函F(x)的导数,根据函数的单调性证明即可;
(Ⅲ)通过讨论k的范围,结合函数的单调性求解即可.

解答 解:(I)f′(x)=$\frac{1}{x}$-x+1=$\frac{-{x}^{2}+x+1}{x}$,x∈(0,∞),
由 f′(x)>0得:$\left\{\begin{array}{l}{x>0}\\{-{x}^{2}+x+1>0}\end{array}\right.$,
解得0<x<$\frac{1+\sqrt{5}}{2}$,
故f(x) 的单调递增区间(0,$\frac{1+\sqrt{5}}{2}$);
(II)令F(x)=f(x)-(x-1),x∈(0,+∞),
则有F′(x)=$\frac{1-{x}^{2}}{x}$,
当 x∈(1,+∞)时,F′(x)<0,所以F(x)在[1,+∞) 上单调递减,
故当x>1 时,F(x)max=F(1)=0,
即当x>1 时,f(x)<x-1;
(III)由(II)知,当k=1 时,不存在x0>1 满足题意,
当k>1 时,对于x>1,有f(x)<x-1<k(x-1),
则f(x)<k(x-1),从而不存在xx0>1 满足题意,
当k<1 时,令G(x)=f(x)-k(x-1),x∈(0,∞),
则有G′(x)=$\frac{1}{x}$-x-k=$\frac{-{k}^{2}+(1-k)x+1}{x}$,
由G′(x)=0 得:-x2+(1-k)x+1=0,
得x1=$\frac{1-k-\sqrt{(1-k)^{2}+4}}{2}$<0,x2=$\frac{1-k+\sqrt{(1+k)^{2}+4}}{2}$>1,
当x∈(1,x2) 时,G′(x)>0,故G(x) 在[1,x 2)内单调递增,
从而当x∈(1,x2) 时,G(x)>G(1)=0,即f(x)>k(x-1),
综上,k的取值范围是(-∞,1).

点评 本题考查了函数的单调性、最值问题,考查导数的应用,不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.把正奇数数列{2n-1}中的数按上小下大、左小右大的原则排成如图的三角形数表:
设amn(m,n∈N*)是位于这个三角形数表中从上往下数第m行、从左往右数第n个数.
(1)求a73
(2)若amn=2011,求m,n的值;
(3)已知函数$f(x)=\frac{{\root{3}{x}}}{2^n}(x>0)$,若记三角形数表中从上往下数第n行各数的和为bn,求数列{f(bn)}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若AB是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>c)垂直于x轴的动弦,F为焦点,当AB经过焦点F时|AB|=3,当AB最长时,∠AFB=120°.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知N(4,0),连接AN与椭圆相交于点M,证明直线BM恒过x轴定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆x2+y2=8内有一点M(-1,2),AB为经过点M且倾斜角为α的弦.
(1)当弦AB被点M平分时,求直线AB的方程;
(2)当α=$\frac{3π}{4}$时,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.正方体ABCD-A1B1C1D1中A1C1与AD1所成角的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,设A(5,3),B(4,5),C(1,1),则△ABC的面积等于(  )
A.15B.10C.7.5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表:
x-3-2-101234
y60-4-6-6-406
求不等式ax2+bx+c>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知向量$\overrightarrow{a}$=(cosθ,sinθ)与向量$\overrightarrow{b}$=(1,1)的夹角为$\frac{π}{6}$,则sin2θ=(  )
A.$\frac{3}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow a$=(2,-1),$\overrightarrow b$=(-1,1),则$\overrightarrow a$•$\overrightarrow b$+${\overrightarrow b^2}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案