精英家教网 > 高中数学 > 题目详情
如图五面体中,四边形CBB1C1为矩形,B1C1⊥平面ABB1N,四边形ABB1N为梯形,
且AB⊥BB1,BC=AB=AN=
1
2
BB1
=4.
(1)求证:BN⊥平面C1B1N;    
(2)求此五面体的体积.
考点:棱柱、棱锥、棱台的体积,直线与平面垂直的判定
专题:空间位置关系与距离
分析:(1)利用直线与平面垂直的性质定理证明B1C1⊥BN,然后利用勾股定理证明BN⊥B1N,通过B1N∩B1C1=B1,利用直线与平面垂直的判定定理证明:BN⊥平面C1B1N;    
(2)连接CN,说明NM⊥平面B1C1CB,然后五面体的体积V=VC-ABN+VN-B1C1CB分别求解即可.
解答: 解:(1)证明:连4,过N作NM⊥BB1,垂足为M,
∵B1C1⊥平面ABB1N,BN?平面ABB1N,
∴B1C1⊥BN,…(2分)
又,BC=4,AB=4,BM=AN=4,BA⊥AN,
BN=
42+42
=4
2
B1N=
NM2+B1M2
=
42+42
=4
2

BB1=82=64,B1N2+BN2=32+32=64
∴BN⊥B1N,…(4分)
∵B1C1?平面B1C1N,B1N?平面B1C1N,B1N∩B1C1=B1
∴BN⊥平面C1B1N…(6分)
(2)连接CN,VC-ABN=
1
3
×BC•S△ABN=
1
3
×4×
1
2
×4×4=
32
3
,…(8分)

又B1C1⊥平面ABB1N,所以平面CBB1C1⊥平面ABB1N,且平面CBB1C1∩ABB1N=BB1,NM⊥BB1
NM?平面B1C1CB,
∴NM⊥平面B1C1CB,…(9分)
VN-B1C1CB=
1
3
×NM•S矩形B1C1CB=
1
3
×4×4×8=
128
3
…(11分)
此几何体的体积V=VC-ABN+VN-B1C1CB=
32
3
+
128
3
=
160
3
…(12分)
点评:本题考查直线与平面垂直的判定定理以及性质定理的应用,几何体的体积的求法,考查转化思想以及空间想象能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C的中心在原点,抛物线y2=8x的焦点是双曲线的一个焦点,且C过点
2
3

(1)求双曲线C的方程;
(2)若双曲线C的实轴左顶点为A,右焦点为F,在第一 象限任取双曲线C上的一点P,试问是否存在常数 λ(λ≠0),使∠PFA=λ∠PAF?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x-lnx的单调递减区间为(  )
A、(-∞,1)
B、(1,+∞)
C、(0,1)
D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域、值域分别为A,B,且A∩B是单元集,下列命题:
①若A∩B={a},则f(a)=a;
②若f(x)具有奇偶性,则f(x)可能为偶函数;
③若B不是单元集,则满足f[f(x)]=f(x)的x值可能不存在;
④若f(x)不是常数函数,则f(x)不可能为周期函数;其中,正确命题的序号为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①若
a
b
=0
,则
a
=
0
b
=
0

②若不平行的两个非零向量
a
b
满足|
a
|=|
b
|
,则(
a
+
b
)•(
a
-
b
)=0

③若
a
b
平行,则|
a
b
|=|
a
|•|
b
|

④若
a
b
b
c
,则
a
c

其中假命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,A(0,-1)D(0,1)B(2,-1)C(2,1),动点P在线段OM上运动,动点Q在线段CB上运动,保持|OP|=|CQ|,则直线AP与DQ的交点T的轨迹方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(15°-θ)+cos(θ+45°)-
3
sin(75°-θ)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
您是否需要志愿者
需要4030
不需要160270
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)通过计算说明,你能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
附:
P(K2≥k)
k
 
0.050
3.841
 
0.010
6.625
  
0.001
10.828
    K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的图象如图所示,下列数值排序正确的是(  )
A、0<f′(3)<f′(4)<f(4)-f(3)
B、0<f′(3)<f(4)-f(3)<f′(4)
C、0<f′(4)<f′(3)<f(4)-f(3)
D、0<f(4)-f(3)<f′(3)<f′(4)

查看答案和解析>>

同步练习册答案