(本小题满分12分)
已知抛物线C1:y2=4x的焦点与椭圆C2:的右焦点F2重合,F1是椭圆的左焦点;
(Ⅰ)在ABC中,若A(-4,0),B(0,-3),点C在抛物线y2=4x上运动,求ABC重心G的轨迹方程;
(Ⅱ)若P是抛物线C1与椭圆C2的一个公共点,且∠PF1F2=,∠PF2F1=,求cos的值及PF1F2的面积。
(Ⅰ) (y+1)2=.(Ⅱ) .
【解析】
试题分析:(Ⅰ)设重心G(x,y),则 整理得………2分
将(*)式代入y2=4x中,得(y+1)2= ∴重心G的轨迹方程为(y+1)2=.………4分
(Ⅱ) ∵椭圆与抛物线有共同的焦点,由y2=4x得F2(1,0),∴b2=8,椭圆方程为.………6分
设P(x1,y1) 由得,∴x1=,x1=-6(舍).
∵x=-1是y2=4x的准线,即抛物线的准线过椭圆的另一个焦点F1。
设点P到抛物线y2=4x的准线的距离为PN,则︱PF2︱=︱PN︱.
又︱PN︱=x1+1=,
∴.………………………8分
过点P作PP1⊥x轴,垂足为P1,在Rt△PP1F1中,cosα=在Rt△PP1F2中,cos(л-β)=,cosβ=,∴cosαcosβ=。………………………………10分
∵x1=,∴∣PP1∣=,∴.………………………12分
考点:本题考查了轨迹方程的求法及直线与抛物线的位置关系
点评:此类问题利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com