精英家教网 > 高中数学 > 题目详情
函数f(x)=2x+
a
2x
(a∈R)为奇函数,则a=
 
考点:函数奇偶性的判断
专题:函数的性质及应用
分析:根据函数是奇函数,由f(0)=0得a=-1.
解答: 解:∵f(x)=2x+
a
2x
(a∈R)为奇函数,且函数的定义域为R,
∴由f(0)=0得1+a=0,
解得a=-1.
故答案为:-1.
点评:本题主要考查函数奇偶性的应用,根据函数奇偶性的性质由f(0)=0是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx(b∈R),则下列结论正确的是(  )
A、?b∈R,f(x)在(0,+∞)上是增函数
B、?b∈R,f(x)在(0,+∞)上是减函数
C、?b∈R,f(x)为奇函数
D、?b∈R,f(x)为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:3x2+y2=12,直线x-y-2=0交椭圆C于A,B两点.
(Ⅰ)求椭圆C的焦点坐标及长轴长;
(Ⅱ)求以线段AB为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-x+a+1
(1)若f(x)≥0对一切实数x恒成立,求实数a的取值范围.
(2)若f(x)在区间[a,a+1]是单调函数,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=4x的焦点为F,过点F的直线l交抛物线C于点P,Q.
(Ⅰ)若|PF|=3(点P在第一象限),求直线l的方程;
(Ⅱ)求证:
OP
OQ
为定值(点O为坐标原点).

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中所有真命题的序号是
 

①“a>b”是“a2>b2”的充分条件;
②“|a|>|b|”是“a2>b2”的必要条件;
③“a>b”是“a+c>b+c”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列语句:
①函数y=sin(
2
-2x)
是偶函数;
②函数y=sin(x+
π
4
)
在闭区间[-
π
2
π
2
]
上是增函数;
③函数y=loga(x-1)+1(a>1)的图象必过定点(2,1)
④函数y=3cos(2x-
π
4
)的对称轴方程为x=
2
+
π
8
,k∈Z;
其中正确的语句的序号是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+sinx+cosx.若函数f(x)的图象上存在不同的两点A,B,使得曲线y=f(x)在点A,B处的切线互相垂直,则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下四个命题:
①若“p∧q”为假命题,则p,q均为假命题;
②命题“若a>b,则2a>2b-1”的否命题为“若a≤b,则2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x0∈R,x02+1≤1”
④给出四个函数y=x-1,y=x,y=x2,y=x3,则在R上是增函数的有3个.
其中不正确的命题个数是(  )
A、4B、3C、2D、1

查看答案和解析>>

同步练习册答案