精英家教网 > 高中数学 > 题目详情
已知:函数f(x)=(1+x)2-ln(1+x)2
(1)求:f(x)的单调区间;
(2)若x∈[0,1]时,设函数y=f(x)图象上任意一点处的切线的倾斜角为θ,求:θ的取值范围.
分析:(1)先求函数的定义域,然后求导函数,令导数等于0,判定导数符号从而求出函数的单调区间;
(2)求切线斜率的取值范围即先求g(x)=f'(x)=
2x(x+2)
x+1
的取值范围,可利用导数研究g(x)的范围,从而切线的范围,即可求出θ的取值范围.
解答:解:(1)函数的定义域为(-∞,-1)∪(-1,+∞),f'(x)=2(1+x)-
2
1+x
=
2x(x+2)
x+1

令f'(x)=0解得x=0或x=-2,则
x (-∞,-2) -2 (-2,-1) (-1,0) 0 (0,+∞)
f'(x) - 0 + - 0 +
f(x) 极大 极小
由此:函数f(x)的单调增区间:(-2,-1),(0,+∞);  函数f(x)的单调减区间:(-∞,-2),(-1,0),
(2)令g(x)=f'(x)=
2x(x+2)
x+1
,(x≠-1)
g'(x)=2+
2
(x+1)2
>0,则g(x)在区间[0,1]上是增函数,
所以f'(x)=g(x)∈[0,3],根据导数的几何意义可知:f'(x)=k=tanθ∈[0,3],
∴θ∈[0,arctan3].
点评:本题主要考查了利用导数研究函数的单调性,以及导数的几何意义,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)在(-∞,0)∪(0,+∞)上有意义,且在(0,+∞)上是减函数,f(1)=0,又有函数g(θ)=sin2θ+mcosθ-2m,θ∈[0,
π2
],若集合M={m|g(θ)<0},集合N={m|f[g(θ)]>0}.
(1)解不等式f(x)>0;
(2)求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)的定义域为(-1,1),当x∈(0,1)时,f(x)=
2x2x+1

(1)求f(x)在(-1,1)上的解析式;
(2)判断f(x)在(0,1)上的单调性,并证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xa的图象过点(
1
2
2
2
)
,则f(x)在(0,+∞)单调递

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)在区间(a,b)上是减函数,证明f(x)在区间(-b,-a)上仍是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:函数f(x)=x3-6x2+3x+t,t∈R.
(1)①证明:a3-b3=(a-b)(a2+ab+b2
②求函数f(x)两个极值点所对应的图象上两点之间的距离;
(2)设函数g(x)=exf(x)有三个不同的极值点,求t的取值范围.

查看答案和解析>>

同步练习册答案