精英家教网 > 高中数学 > 题目详情
已知x,y之间的数据如下表所示,则y与x之间的线性回归方程必过点(  )
x 1.08 1.12 1.19 1.30
y 2.25 2.37 2.40 2.60
A、(0,0)
B、(1.17,0)
C、(0,2.41)
D、(1.17,2.41)
考点:线性回归方程
专题:概率与统计
分析:根据线性回归方程一定过样本中心点,求出样本中心点就是方程要过的点
解答: 解:由题意知x=
1.08+1.12+1,19+1.3
4
=1.17
y=
2.25+2.37+2.41+2.6
4
=2.41
∴样本中心点是(1.17,2.41)
∴y与x之间的线性回归方程必过点(1.17,2.41)
故选D
点评:本题考查样本中心点与线性回归方程之间的关系,是一个基础题目,也是高考中必得分的题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|(x-1)(x-4)>0},B={x|log2x<1},则集合(∁RA)∩B=(  )
A、{x|1≤x≤4}
B、{x|0<x<2}
C、{x|1≤x<2}
D、{x|2<x≤4}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinxcosy=
1
2
,则cosxsiny的取值范围是(  )
A、[-
1
2
1
2
]
B、[-
3
2
1
2
]
C、[-
1
2
3
2
]
D、[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确命题的个数是(  )
(1)对于命题p:?x∈R,使得x2+x+1<0,则¬P:?x∈R,均有x2+x+1>0;
(2)m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
(3)已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为
?
y
=1.23x+0.08
(4)若函数f(x)是定义在R上的奇函数,且f(x+4)=f(x),则f(2012)=0.
A、2B、3C、4D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
b
满足|
a
|=1,|
b
|=2,且(
a
-
b
)⊥
a
,则
a
b
的夹角为(  )
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:f(x)=x2-2x在区间(1,+∞)上递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2).
(1)求函数f(x)的解析式及x0的值;
(2)在△ABC中,角A,B,C成等差数列,求f(x)在[B,x0)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=4cosxsin(x+
π
6
)-1.
(Ⅰ)求f(x)的最小正周期和最大值及取得最大值的身变量x的集合;
(Ⅱ)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

将水注入锥形容器中,其速度为4m3/min,设锥形容器的高为8m,顶口直径为6m,求当水深为5m时,水面上升的速度.

查看答案和解析>>

同步练习册答案