精英家教网 > 高中数学 > 题目详情
在△ABC中,a,b,c分别是角A,B,C的对边,已知tanA+tanC=
3
(tanA•tanC-1)
,且b=
7
2
S△ABC=
3
3
2

求:(1)角B;
(2)a+c的值.
分析:(1)由tan(A+C)=
tanA+tanC
1-tanAtanC
及正切函数的诱导公式可得tanA+tanC=-tanB(1-tanAtanC),结合已知可求tanB,由B∈(0,π)可求B
(2)由(1)中的B及三角形的面积公式可求ac,然后由余弦定理b2=a2+c2-2accosB及b=
7
2
可求a+c
解答:解:(1)∵tan(A+C)=
tanA+tanC
1-tanAtanC

∴tanA+tanC=tan(A+C)•(1-tanA•tanC)
∵A+C=π-B
∴tan(A+C)=tan(π-B)=-tanB
∴tanA+tanC=-tanB(1-tanAtanC)=tanB(tanAtanC-1)
又∵tanA+tanC=
3
(tanA•tanC-1)

tanB=
3
.

∵B∈(0,π)
B=
π
3
…(6分)
(2)∵S△ABC=
1
2
ac•sinB,且B=
π
3
S△ABC=
3
3
2

∴ac=6.
b2=a2+c2-2accosB,b=
7
2

(
7
2
)2=(a+c)2-2ac(1+cosB)

(a+c)2=
121
4

∵a+c>0
a+c=
11
2
…(12分)
点评:本题主要考查了两角和的正切公式tan(A+B)=
tanA+tanB
1-tanAtanB
的逆应用,三角形的面积公式及余弦定理的应用,属于三角公式的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,∠A、∠B、∠C所对的边长分别是a、b、c.满足2acosC+ccosA=b.则sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a<b<c,B=60°,面积为10
3
cm2,周长为20cm,求此三角形的各边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别为角A,B,C的对边,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面积S=
3
3
2
,求边c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,A,B,C为三个内角,若cotA•cotB>1,则△ABC是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)函数的图象是由y=sinx的图象经过如下三步变换得到的:
①将y=sinx的图象整体向左平移
π
6
个单位;
②将①中的图象的纵坐标不变,横坐标缩短为原来的
1
2

③将②中的图象的横坐标不变,纵坐标伸长为原来的2倍.
(1)求f(x)的周期和对称轴;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步练习册答案