精英家教网 > 高中数学 > 题目详情

如图,椭圆)的右焦点为,过点的一动直线绕点转动,并且交椭圆于A,B两点,P为线段AB的中点.

(1)求点P的轨迹H的方程;

(2)若在Q的方程中,令

设轨迹H的最高点和最低点分别为M和N.当为何值时,MNF为一个正三角形?

解:如图,(1)设椭圆Q:(a>b>0)

上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则

1°当AB不垂直x轴时,x1¹x2

由(1)-(2)得

b2(x1-x2)2x+a2(y1-y2)2y=0

  

b2x2+a2y2-b2cx=0…………(3)

2°当AB垂直于x轴时,点P即为点F,满足方程(3)

故所求点P的轨迹方程为:b2x2+a2y2-b2cx=0

(2)因为轨迹H的方程可化为:

M(),N( ,-),F(c,0),使△MNF为一个正三角形时,则

tan,即a2=3b2. 由于

,则1+cosq+sinq=3 sinq,得q=arctan

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系xOy中,已知椭圆C:
y2
a2
+
y2
b2
=1(a>b>0)的离心率e=
3
2
,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足
PA
AB
=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直角坐标系中,已知椭圆的离心率e=,左右两个焦分别为.过右焦点且与轴垂直的

直线与椭圆相交M、N两点,且|MN|=1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 设椭圆的左顶点为A,下顶点为B,动点P满足

)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,椭圆C 的离心率,左焦

点为右焦点为,短轴两个端点为.与轴不垂直的直线

椭圆C交于不同的两点,记直线的斜率分别为,且
(1)求椭圆 的方程;
(2)求证直线 与轴相交于定点,并求出定点坐标.

(3)当弦 的中点落在内(包括边界)时,求直线的斜率的取值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

如图,在直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率e=,左右两个焦分别为F1、F2.过右焦点F2且与轴垂直的
直线与椭圆C相交M、N两点,且|MN|=1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆C的左顶点为A,下顶点为B,动点P满足=m-4,(m∈R)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆C上.

查看答案和解析>>

同步练习册答案