如图,椭圆
(
)的右焦点为
,过点
的一动直线
绕点
转动,并且交椭圆于A,B两点,P为线段AB的中点.
(1)求点P的轨迹H的方程;
(2)若在Q的方程中,令
,
.
设轨迹H的最高点和最低点分别为M和N.当
为何值时,
MNF为一个正三角形?
![]()
解:如图,(1)设椭圆Q:
(a>b>0)
上的点A(x1,y1)、B(x2,y2),又设P点坐标为P(x,y),则
![]()
1°当AB不垂直x轴时,x1¹x2,
由(1)-(2)得
b2(x1-x2)2x+a2(y1-y2)2y=0
b2x2+a2y2-b2cx=0…………(3)
2°当AB垂直于x轴时,点P即为点F,满足方程(3)
故所求点P的轨迹方程为:b2x2+a2y2-b2cx=0
(2)因为轨迹H的方程可化为:![]()
M(
,
),N(
,-
),F(c,0),使△MNF为一个正三角形时,则
tan
=
=
,即a2=3b2. 由于
,
,则1+cosq+sinq=3 sinq,得q=arctan![]()
科目:高中数学 来源: 题型:
| y2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| PA |
| AB |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系
中,已知椭圆
的离心率e=
,左右两个焦分别为
.过右焦点
且与
轴垂直的
直线与椭圆
相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 设椭圆
的左顶点为A,下顶点为B,动点P满足
,
(
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆
上. ![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直角坐标系
中,已知椭圆
的离心率e=
,左右两个焦分别为
.过右焦点
且与
轴垂直的
直线与椭圆
相交M、N两点,且|MN|=1.
(Ⅰ) 求椭圆
的方程;
(Ⅱ) 设椭圆
的左顶点为A,下顶点为B,动点P满足
,
(
)试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆
上. ![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,椭圆C:
的离心率
,左焦
点为
右焦点为
,短轴两个端点为
.与
轴不垂直的直线
与
椭圆C交于不同的两点
、
,记直线
、
的斜率分别为
、
,且
.
(1)求椭圆
的方程;
(2)求证直线
与
轴相交于定点,并求出定点坐标.
(3)当弦
的中点
落在
内(包括边界)时,求直线
的斜率的取值。
![]()
查看答案和解析>>
科目:高中数学 来源:2012-2013学年广东省湛江二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com