分析 确定AB⊥AC,S△ABC=$\frac{\sqrt{3}}{2}$,利用三棱锥D-ABC的体积的最大值为3,可得D到平面ABC的最大距离为3,再利用射影定理,即可求出球的半径,即可求出球O的表面积.
解答 解:∵AB=1,BC=$\sqrt{3}$,AC=2,
∴AB⊥BC,S△ABC=$\frac{\sqrt{3}}{2}$,
∵三棱锥D-ABC的体积的最大值为$\frac{{\sqrt{3}}}{2}$,
∴D到平面ABC的最大距离为3,
设球的半径为R,则12=3×(2R-3),
∴R=$\frac{5}{3}$,
∴球O的表面积为4πR2=$\frac{100π}{9}$.
故答案为:$\frac{100π}{9}$
点评 本题考查球的半径,考查体积的计算,确定D到平面ABC的最大距离为3是关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 2 | 3 |
| y | 1 | 3 | 5 | 7 |
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{2}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com