精英家教网 > 高中数学 > 题目详情
15.设a=40.6,b=80.34,c=(${\frac{1}{2}}$)-0.9,则a,b,c的大小关系为(  )
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

分析 化简a,b,c,根据指数函数的性质判断其大小即可.

解答 解:∵a=40.6=21.2
b=80.34=21.02
c=(${\frac{1}{2}}$)-0.9=20.9
且f(x)=2x在R递增,
∴a>b>c,
故选:A.

点评 本题考查了指数函数的性质,考查根据函数的单调性判断函数值的大小问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.
(1)求异面直线AP,BM所成角的余弦值;
(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为$\frac{4}{5}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求双曲线C:$\frac{x^2}{8}$-$\frac{y^2}{12}$=1的焦点坐标、实轴长、虚轴长及渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各组函数中不表示同一函数的是(  )
A.f(x)=lgx2,g(x)=2lg|x|B.f(x)=x,g(x)=$\root{3}{{x}^{3}}$
C.f(x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$•\sqrt{x-2}$D.f(x)=|x+1|,g(x)=$\left\{\begin{array}{l}{x+1,x≥-1}\\{-x-1,x<-1}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$的定义域为(  )
A.{x|x≥-3且x≠-2}B.{x|x≥-3且x≠2}C.{x|x≥-3}D.{x|x≥-2且x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}f({x+2}),x<3\\{2^x},x≥3\end{array}$,则f(log23)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)左,右焦点为F1,F2,P是双曲线C上的一点,PF1与x轴垂直,△PF1F2的内切圆方程为(x+1)2+(y-1)2=1,则双曲线方程为(  )
A.$\frac{x^2}{2}-\frac{y^2}{3}=1$B.${x^2}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=x|x-a|,若对任意x1,x2∈[3,+∞)且x1≠x2有不等式(x1-x2)[f(x1)-f(x2)]>0恒成立,则实数a取值范围为(  )
A.(-∞,-3]B.[-3,0)C.(-∞,3]D.(0,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某四面体的三视图如图所示,该四面体的体积的是8.

查看答案和解析>>

同步练习册答案