【题目】已知复数Z1 , Z2在复平面内对应的点分别为A(﹣2,1),B(a,3).
(1)若|Z1﹣Z2|= ,求a的值.
(2)复数z=Z1Z2对应的点在二、四象限的角平分线上,求a的值.
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+)(A>0,ω>0)在x∈(0,7π)内取到一个最大值和一个最小值,且当x=π时,y有最大值3,当x=6π时,y有最小值﹣3.
(1)求此函数解析式;
(2)写出该函数的单调递增区间;
(3)是否存在实数m,满足不等式Asin( )>Asin( )?若存在,求出m值(或范围),若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于函数f(x),若在定义域内存在实数x,满足f(﹣x)=﹣f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x﹣4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(﹣x)=﹣f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[﹣1,1]上的“局部奇函数”,求实数m的取值范围.
(3)若f(x)=4x﹣m2x+1+m2﹣3为定义域R上的“局部奇函数”,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线是平面内与两个定点, 的距离之积等于的点的轨迹.给出下列命题:
①曲线过坐标原点;
②曲线关于坐标轴对称;
③若点在曲线上,则的周长有最小值;
④若点在曲线上,则面积有最大值.
其中正确命题的个数为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)当a>0时,求函数f(x)的单调区间;
(2)若f(x)在[1,e]上的最小值为1,求实数a的取值范围;(其中e为自然对数的底数);
(3)若 上恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)设等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1
(1) 求数列{an}的通项公式;
(2) 设数列{bn}的前n项和Tn,且Tn+ = λ(λ为常数),令cn=b2n,(n∈N).求数列{cn}的前n项和Rn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com