精英家教网 > 高中数学 > 题目详情

如图,平面ABCD⊥平面ABEF,四边形ABCD是正方形,四边形ABEF是矩形,AF=AD=a,GEF的中点,GB与平面AGC所成角的正弦值为(  )

(A) (B) (C) (D)

 

C

【解析】如图,A为原点建立空间直角坐标系,

A(0,0,0),B(0,2a,0),C(0,2a,2a),G(a,a,0),F(a,0,0),

=(a,a,0),=(0,2a,2a),=(a,-a,0),=(0,0,2a).

设平面AGC的一个法向量为n1=(x1,y1,1),

n1=(1,-1,1).

设θ为GB与平面AGC所成的角,

sinθ===.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十四第七章第三节练习卷(解析版) 题型:选择题

给出下列命题:

①没有公共点的两条直线平行;

②互相垂直的两条直线是相交直线;

③既不平行也不相交的直线是异面直线;

④不同在任一平面内的两条直线是异面直线.

其中正确命题的个数是(  )

(A)1 (B)2 (C)3 (D)4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十五第七章第四节练习卷(解析版) 题型:填空题

设互不相同的直线l,m,n和平面α,β,γ,给出下列三个命题:

①若lm为异面直线,l?α,m?β,则α∥β;

②若α∥β,l?α,m?β,lm;

③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,mn.

其中真命题的个数为    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十二第七章第一节练习卷(解析版) 题型:选择题

一个正方体截去两个角后所得几何体的正视图(又称主视图)、侧视图(又称左视图)如图所示,则其俯视图为( )

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十九第七章第八节练习卷(解析版) 题型:解答题

如图,已知正四棱锥P-ABCD的所有棱长都是2,底面正方形两条对角线相交于O,M是侧棱PC的中点.

(1)求此正四棱锥的体积.

(2)求直线BM与侧面PAB所成角θ的正弦值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十九第七章第八节练习卷(解析版) 题型:选择题

在三棱柱ABC-A1B1C1,底面为边长为1的正三角形,侧棱AA1⊥底面ABC,D在棱BB1,BD=1,AD与平面AA1C1C所成的角为α,sinα的值为(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十三第七章第二节练习卷(解析版) 题型:填空题

已知某几何体的三视图如图所示,则该几何体的体积为    .

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十七第七章第六节练习卷(解析版) 题型:填空题

在空间直角坐标系中,以点A(4,1,9),B(10,-1,6),C(x,4,3)为顶点的△ABC是以BC为斜边的等腰直角三角形,则实数x的值为    .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业四十 第六章第六节练习卷(解析版) 题型:选择题

在证明命题“对于任意角θ,cos4θ-sin4θ=cos2θ”的过程:cos4θ-sin4θ=(cos2θ+sin2θ)·(cos2θ-sin2θ)=cos2θ-sin2θ=cos2θ”中应用了(  )

(A)分析法

(B)综合法

(C)分析法和综合法综合使用

(D)间接证法

 

查看答案和解析>>

同步练习册答案