精英家教网 > 高中数学 > 题目详情

【题目】直线x+y=1与双曲线 =1 (a>0,b>0)交于M、N两点,若以M、N两点为直径的圆经过坐标原点O.
(1)求 的值;
(2)若0<a≤ ,求双曲线离心率e的取值范围.

【答案】
(1)解:由 得:(b2﹣a2)x2+2a2x﹣a2﹣a2b2=0(b2≠a2),

设M(x1,y1),N(x2,y2),则x1+x2= ,x1x2=

由题意得:x1x2+y1y2=0,

x1 x2+(1﹣x1)(1﹣x2)=1﹣(x1+x2)+2x1x2=1+ =0,

∴b2﹣a2﹣2a2b2=0,∴ =2


(2)解:∵0<a≤ 即0<2a≤1, ≤1﹣2a2<,1< ≤2,

又∵b2= ,e2= =1+ ,∴e∈( ]


【解析】(1)联立方程,利用韦达定理,结合x1x2+y1y2=0,即可求 的值;(2)若0<a≤ ,求双曲线离心率e的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解关于x的不等式(a2﹣4)x2+4x﹣1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①已知M={(x,y)| =3},N={(x,y)|ax+2y+a=0}且M∩N=,则a=﹣6;
②已知点A(x1 , y1),B(x2 , y2),则以AB为直径的圆的方程是(x﹣x1)(x﹣x2)+(y﹣y1)(y﹣y2)=0;
=1(a≠b)表示焦点在x轴上的椭圆;
④已知抛物线y2=2px(p>0)的焦点弦AB的两端点坐标分别为A(x1 , y2),B(x2 , y2),则 =﹣4
其中的真命题是 . (把你认为是真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P是曲线C: ﹣y2=1上的任意一点,直线l:x=2与双曲线C的渐近线交于A,B两点,若 ,(λ,μ∈R,O为坐标原点),则下列不等式恒成立的是(
A.λ22
B.λ22≥2
C.λ22
D.λ22≤2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了估计某校的一次数学考试情况,现从该校参加考试的600名学生中随机抽出60名学生,其成绩(百分制)均在[40,100)上,将这些成绩分成六段[40,50),[50,60)…[90,100),后得到如图所示部分频率分布直方图.

(1)求抽出的60名学生中分数在[70,80)内的人数;
(2)若规定成绩不小于85分为优秀,则根据频率分布直方图,估计该校优秀人数.
(3)根据频率分布直方图算出样本数据的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记函数f(x)= 的定义域为集合A,则函数g(x)= 的定义域为集合B,
(1)求A∩B和A∪B
(2)若C={x|p﹣2<x<2p+1},且CA,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且的离心率为.

(1)求的方程;

(2)过的顶点作两条互相垂直的直线与椭圆分别相交于两点.若的角平分线方程为,求的面积及直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组函数表示相同函数的是(
A.f(x)= ,g(x)=( 2
B.f(x)=1,g(x)=x2
C.f(x)= ,g(t)=|t|
D.f(x)=x+1,g(x)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017江西上饶联考】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为,两天是否下雨互不影响,若两天都下雨的概率为

1及基地的预期收益;

2若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为万元,有雨时收益为万元,且额外聘请工人的成本为元,问该基地是否应该额外聘请工人,请说明理由.

查看答案和解析>>

同步练习册答案