精英家教网 > 高中数学 > 题目详情

已知幂函数f(x)=(t3-t+1)(t∈Z)是偶函数且在(0,+∞)上为增函数,求实数t的值.

∵f(x)是幂函数,∴t3-t+1=1.∴t=-1,1或0.

当t=0时f(x)=是奇函数;当t=-1时f(x)= 是偶函数;

当t=1时f(x)=是偶函数;且,都大于0,在(0,+∞)上为增函数.

故t=1且f(x)= 或t=-1且f(x)=.


解析:

关于幂函数y=xn(n∈Q,n≠0)的奇偶性问题,设 (|p|、|q|互质),当q为偶数时,p必为奇数.y=xn是非奇非偶函数;当q是奇数时,y=xn的奇偶性与p的奇偶性对应.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知幂函数f(x)=x-m2+2m+3(m∈Z)为偶函数且在区间(0,+∞)上是单调增函数.
(1)求函数f(x)的解析式;
(2)设函数g(x)=2
f(x)
-qx+q-1
,若g(x)>0对任意x∈[-1,1]恒成立,求实数q的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

.已知幂函数f(x)=xk2-2k-3(k∈N*)的图象关于y轴对称,且在区间(0,+∞)上是减函数,
(1)求函数f(x)的解析式;
(2)若a>k,比较(lna)0.7与(lna)0.6的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m2-m-1)xm2-2m-1,满足f(-x)=f(x),则m=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=xm2-2m-3(m∈Z)的图象与x轴、y轴无公共点且关于y轴对称.
(1)求m的值;
(2)画出函数y=f(x)的图象(图象上要反映出描点的“痕迹”).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=x
3
2
+k-
1
2
k2
(k∈Z)

(1)若f(x)为偶函数,且在(0,+∞)上是增函数,求f(x)的解析式;
(2)若f(x)在(0,+∞)上是减函数,求k的取值范围.

查看答案和解析>>

同步练习册答案