精英家教网 > 高中数学 > 题目详情
在△ABC中,AB=4,AC=2,M是△ABC内一点,且满足
MA
+
MB
+
MC
=
0
,则
AM
BC
=
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由满足
MA
+
MB
+
MC
=
0
,可得点M是△ABC的重心,于是
AM
BC
=
1
2
×
2
3
(
AB
+
AC
)
•(
AC
-
AB
)
,即可得出.
解答: 解:∵满足
MA
+
MB
+
MC
=
0

AM
=
MB
+
MC
,∴点M是△ABC的重心,
AM
BC
=
1
2
×
2
3
(
AB
+
AC
)
•(
AC
-
AB
)
=
1
3
(
AC
2
-
AB
2
)
=
1
3
(22-42)
=-4.
故答案为:-4.
点评:本题考查了三角形的重心性质和数量积的运算,考查了推理能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:
阅读过莫言的
作品数(篇)
0~25 26~50 51~75 76~100 101~130
男生 3 6 11 18 12
女生 4 8 13 15 10
(Ⅰ)试估计该校学生阅读莫言作品超过50篇的概率;
(Ⅱ)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?
  非常了解 一般了解 合计
男生      
女生      
合计      
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

有4名同学站成一排,要求甲、乙两名同学必须相邻,有
 
种不同的站法(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

设直线2x+y-1=0的倾斜角为α,则sin(2α+
π
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

直线y=3x+
2
与圆心为D的圆(x-1)2+(y-
3
2=1交于A,B两点,直线AD,BD的倾斜角分别为α,β,则tan(α+β)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C:y2=8x的准线与x轴相交于点P,过点P斜率k为正的直线交C于两点A、B,F为C的焦点,若|FA|=2|FB|,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x-3|+|x-2|+k.
(1)若f(x)≥3恒成立,求k的取值范围;
(2)当k=1时,解不等式:f(x)<3x.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数(1+i)i=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x)表示大于x的最小整数,例如[3)=4,[-1.2)=-1.下列命题:
①函数f(x)=[x)-x的值域是(0,1];
②若{an}是等差数列,则{[an)}也是等差数列;
③若{an}是等比数列,则{[an)}也是等比数列;
④若x∈(1,4),则方程[x)-x=
1
2
有3个根.
正确的是(  )
A、②④B、③④C、①③D、①④

查看答案和解析>>

同步练习册答案