精英家教网 > 高中数学 > 题目详情
大家知道,莫言是中国首位获得诺贝尔奖的文学家,国人欢欣鼓舞.某高校文学社从男女生中各抽取50名同学调查对莫言作品的了解程度,结果如下:
阅读过莫言的
作品数(篇)
0~25 26~50 51~75 76~100 101~130
男生 3 6 11 18 12
女生 4 8 13 15 10
(Ⅰ)试估计该校学生阅读莫言作品超过50篇的概率;
(Ⅱ)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”.根据题意完成下表,并判断能否有75%的把握认为对莫言作品的非常了解与性别有关?
  非常了解 一般了解 合计
男生      
女生      
合计      
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635
考点:独立性检验的应用
专题:综合题,概率与统计
分析:(Ⅰ)求出阅读莫言作品在50篇以上的频率,估计该校学生阅读莫言作品超过50篇的概率;
(Ⅱ)利用独立性检验的知识进行判断.
解答: 解:(Ⅰ)由抽样调查阅读莫言作品在50篇以上的频率为
11+18+12+13+15+10
50+50
=
79
100

据此估计该校学生阅读莫言作品超过50篇的概率约为P=
79
100
…..(5分)
(Ⅱ)
非常了解 一般了解 合计
男生 30 20 50
女生 25 25 50
合计 55 45 100
…..(8分)
根据列联表数据得K2=
100×(30×25-20×25)2
50×50×55×45
≈1.010<1.323

所以没有75%的把握认为对莫言作品的非常了解与性别有关.…..(12分)
点评:本题主要考查独立性检验的应用,利用列联表计算出K2,是解决本题的关键.这类题目主要是通过计算数据来进行判断的.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l的参数方程是
x=t
y=t+1
(t是参数),以原点为极点,x轴的正半轴为极轴,圆C的极坐标方程为ρ=-6cosθ,则圆心C到直线l的距离为(  )
A、2
B、
2
C、2
2
D、3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:x2=4y.
(1)若点P是直线y=2x-5上任意一点,过P作C的两条切线PE,PF,切点分别为E,F,M为EF的中点,求证:PM⊥x轴
(2)在(1)的条件下,直线EF是否恒过一定点?若是,求出定点;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos2x-sin2x
(1)求函数f(x)的最小正周期和值域;
(2)已知△ABC的内角A,B,C所对的边分别为a,b,c,若a=2,b=
2
,且f(
A
2
)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

己知函数f(x)=-
1
3
x3+2ax2-3a2x(a∈R且a≠0)

(Ⅰ)当a=-1时,求曲线y=f(x)在(-2,m)处的切线方程:
(Ⅱ)当a>0时,求函数y=f(x)的单调区间和极值;
(Ⅲ)当x∈[2a,2a+2]时,不等式|f′(x)|≤3a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:x2+(y-2)2=1,直线l:y=-1,动圆P与圆M相外切,且与直线l相切.设动圆圆心P的轨迹为E.
(Ⅰ)求E的方程;
(Ⅱ)定点A(4,2),B,C为E上的两个动点,若直线AB与直线AC垂直,求证:直线BC恒过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E、F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4.将四边形EFCD沿EF折起成如图2的位置,使AD=AE.
(1)求证:AF∥平面CBD;
(2)求平面CBD与平面DAE所成锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,S7=49,a4和a8的等差中项为11.
(Ⅰ)求an及Sn
(Ⅱ)证明:当n≥2时,有
1
S1
+
1
S2
+…+
1
Sn
7
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,AB=4,AC=2,M是△ABC内一点,且满足
MA
+
MB
+
MC
=
0
,则
AM
BC
=
 

查看答案和解析>>

同步练习册答案