精英家教网 > 高中数学 > 题目详情

已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为( )

A.3 B.4 C.5 D.6

 

 

A

【解析】f′(x)=3x2+2ax+b;

由已知x1,x2是方程3x2+2ax+b=0的不同两根,

当f(x1)=x1<x2时,

作y=x1,y=x2与f(x)=x3+ax2+bx+c有三个不同交点.

即方程3(f(x))2+2af(x)+b=0有三个不同实根.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 集合、常用逻辑用语、不等式、函数与导数(解析版) 题型:解答题

已知函数f(x)=ax3+(a-2)x+c的图象如图所示.

(1)求函数y=f(x)的解析式;

(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2an-2,数列{bn}满足b1=1,且bn+1=bn+2.

(1)求数列{an},{bn}的通项公式;

(2)设cn=an-bn,求数列{cn}的前2n项和T2n.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 立体几何(解析版) 题型:选择题

已知等比数列{an},若存在两项am,an使得am·an=a32,则的最小值为(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 概率与统计(解析版) 题型:解答题

为调查某社区居民的业余生活状况,研究这一社区居民在20:00-22:00时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:

休闲方式

性别

看电视

看书

合计

10

50

60

10

10

20

合计

20

60

80

 

(1)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分布列和数学期望;

(2)根据以上数据,我们能否在犯错误的概率不超过0.01的前提下,认为“在20:00-22:00时间段居民的休闲方式与性别有关系”?

参考公式:K2=,其中n=a+b+c+d.

参考数据:

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

k0

2.072

2.706

3.841

5.024

6.635

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 概率与统计(解析版) 题型:选择题

使n(n∈N+)的展开式中含有常数项的最小的n为( )

A.4 B.5 C.6 D.7

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 数列、推理与证明(解析版) 题型:解答题

(2013·佛山模拟)在平面直角坐标系xOy中,以Ox为始边,角α的终边与单位圆O的交点B在第一象限,已知A(-1,3).

(1)若OA⊥OB,求tan α的值;

(2)若B点横坐标为,求S△AOB.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学三轮冲刺模拟 三角函数、解三角形与平面向量(解析版) 题型:解答题

已知函数f(x)=x2+ax+b,g(x)=ex(cx+d).若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

(1)求a,b,c,d的值;

(2)若x≥-2时,f(x)≤kg(x),求k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2014年吉林省延边州高考复习质量检测理科数学试卷(解析版) 题型:选择题

已知集合, 集合, 则

A. B. C. D.

 

查看答案和解析>>

同步练习册答案