精英家教网 > 高中数学 > 题目详情
10.设M,N为两个随机事件,如果M,N为互斥事件($\overline{M}$,$\overline{N}$表示M,N的对立事件),那么(  )
A.$\overline{M}$∪$\overline{N}$是必然事件B.M∪N是必然事件
C.$\overline{M}$∩$\overline{N}$=∅D.$\overline{M}$与$\overline{N}$一定不为互斥事件

分析 利用必然事件、互斥事件、对立事件的定义和性质直接求解.

解答 解:由M,N为两个随机事件,M,N为互斥事件,知:
在A 中,$\overline{M}$∪$\overline{N}$=$\overline{(A∩B)}$,是必然事件,故A正确;
在B中,由M和N不一定是对立事件,知M∪N不一定是必然事件,故B错误;
在C中,$\overline{A}$∩$\overline{B}$=$\overline{A∪B}$,不一定是∅,故C错误;
在D中,由M,N为互斥事件,知$\overline{M}$与$\overline{N}$一定为互斥事件,故D错误.
故选:A.

点评 本题考查命题真假的判断,是基础题,解题时要认真审题,注意必然事件、互斥事件、对立事件的定义和性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知曲线C的极坐标方程为ρ-4cosθ=0,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l过点M(1,0),倾斜角为$\frac{π}{6}$.
(1)求曲线C的直角坐标方程与直线l的标准参数方程;
(2)设直线l与曲线C交于A,B两点,求|MA|+|MB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若不等式(a+2)x2+2(a+2)x+4>0对一切恒成立,则a的取值范围是[-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(Ⅰ)若圆x2+y2=4在伸缩变换$\left\{\begin{array}{l}{x′=λx}\\{y′=3y}\end{array}\right.$(λ>0)的作用下变成一个焦点在x轴上,且离心率为$\frac{4}{5}$的椭圆,求λ的值;
(Ⅱ)在极坐标系中,已知点A(2,0),点P在曲线C:$ρ=\frac{2+2cosθ}{si{n}^{2}θ}$上运动,求P、A两点间的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=asinx+cosx(a为常数,x∈R)的图象关于直线$x=\frac{π}{6}$对称,则函数g(x)=sinx+acosx的图象(  )
A.关于点$({\frac{π}{3},0})$对称B.关于点$({\frac{2π}{3},0})$对称
C.关于直线$x=\frac{π}{3}$对称D.关于直线$x=\frac{π}{6}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05,对此,四名同学作出了以下的判断:
p:有95%的把握认为“能起到预防感冒的作用”;
q:如果某人未使用该血清,那么他在一年中有95%的可能性得感冒:
r:这种血清预防感冒的有效率为95%;
s:这种血清预防感冒的有效率为5%.
则下列结论中,正确结论的序号是(1)(4).
(1)p∧¬q;(2)¬p∧q;(3)r∨s;(4)p∧¬r.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知F1、F2分别为双曲线C:x2-$\frac{{y}^{2}}{3}$=1的左、右焦点,过原点的一条直线交双曲线C于A、B两点(点A位于第一象限),且满足AF1⊥BF1,则△AF1F2的内切圆圆心的横、纵坐标之和为(  )
A.2$\sqrt{2}$-1B.$\sqrt{2}+$1C.$\sqrt{7}$-1D.2$\sqrt{7}$-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=$\left\{\begin{array}{l}12ax+1,0<x<a\\{log_{\frac{1}{2}}}x+2,a≤x<1\end{array}$且f(a2)=$\frac{5}{2}$,若当0<x1<x2<1时,f(x1)=f(x2),则x1•f(x2)的取值范围为(  )
A.$(\frac{1}{6},\frac{1}{3}]$B.$(\frac{1}{3},1]$C.$[\frac{1}{6},\frac{1}{3})$D.$[\frac{1}{3},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2,则a的值为(  )
A.1B.3C.$\frac{1}{2}$D.5

查看答案和解析>>

同步练习册答案