【题目】设函数.
(1)当时,求函数的最大值;
(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;
(3)当,,方程有唯一实数解,求正数的值
【答案】(1)(2)(3)
【解析】
(1)对函数进行求导,判断其在单调递增,在单调递减,从而得到最大值为;
(2)求出函数,,则其导数小于等于在恒成立,进而求出的取值范围;
(3)方程有唯一实数解,设,利用导数研究函数的图象特征,设为方程的唯一解,得到,把方程组转化成,再利用导数研究该方程的根,最后根据根的唯一性,得到与的关系,再求出正数的值.
(1)依题意,知的定义域为,
当时,,
令,解得.
当时,,此时单调递增;
当时,,此时单调递减.
所以的极大值为,此即为最大值.
(2),,则有,在上恒成立,所以,.
当时,取得最大值,所以.
(3)因为方程有唯一实数解,所以有唯一实数解,
设,则.
令,,
因为,,所以(舍去),,
当时,,在上单调递减,
当时,,在上单调递增,
当时,,取最小值.
则,即,
所以,
因为,所以
设函数,
因为当时,是增函数,所以至多有一解,
又,所以方程的解为,即,解得.
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b-c)sinB+(2c-b)sinC..
(1)求角A的大小;
(2)若sinB+sinC=,试判断△ABC的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在工业生产中,对一正三角形薄钢板(厚度不计)进行裁剪可以得到一种梯形钢板零件,现有一边长为3(单位:米)的正三角形钢板(如图),沿平行于边的直线将剪去,得到所需的梯形钢材,记这个梯形钢板的周长为 (单位:米),面积为(单位:平方米).
(1)求梯形的面积关于它的周长的函数关系式;
(2)若在生产中,梯形的面积与周长之比(即)达到最大值时,零件才能符合使用要求,试确定这个梯形的周长为多时,该零件才可以在生产中使用?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】半期考试后,班长小王统计了50名同学的数学成绩,绘制频率分布直方图如图所示.
根据频率分布直方图,估计这50名同学的数学平均成绩;
用分层抽样的方法从成绩低于115的同学中抽取6名,再在抽取的这6名同学中任选2名,求这两名同学数学成绩均在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一艘轮船在航行中燃料费和它的速度的立方成正比.已知速度为每小时10千米时,燃料费是每小时6元,而其他与速度无关的费用是每小时96元,问轮船的速度是多少时,航行1千米所需的费用总和最少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司有男性职工64名,一次体检后,将他们的体重(单位:kg)分组为:,,,,,绘制出频率分布直方图如图,图中从左到右的前3个小组的频率之比为.
(1)求这64名男职工中,体重小于60kg的人数;
(2)从体重在kg范围的男职工中用分层抽样的方法选取6名,再从这6名男职工中随机选取2名,记“至少有一名男职工体重大于65kg”为事件,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直角梯形,,将沿折起来,使平面平面.如图,设为的中点,,的中点为.
()求证:平面.
()求平面与平面所成锐二面角的余弦值.
()在线段上是否存在点,使得平面,若存在确定点的位置,若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com