【题目】在平面直角坐标系xOy中,直线l的参数方程为
(t为参数),若以O为极点,x轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为
.
(1)求曲线C的直角坐标方程及直线l的普通方程;
(2)将所得曲线C向右平移1个单位长度,再将曲线C上的所有点的横坐标变为原来的2倍,得到曲线
,求曲线
上的点到直线l的距离的最大值.
科目:高中数学 来源: 题型:
【题目】“中国剩余定理”又称“孙子定理”,最早可见于中国南北朝时期的数学著作《孙子算经》卷下第二十六题,叫做“物不知数”,原文如下:今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?现有这样一个相关的问题:将1到2020这2020个自然数中被5除余3且被7除余2的数按照从小到大的顺序排成一列,构成一个数列,则该数列各项之和为( )
A.56383B.57171C.59189D.61242
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设中心在原点,焦点在
轴上的椭圆
过点
,且离心率为
.
为
的右焦点,
为
上一点,
轴,
的半径为
.
(1)求
和
的方程;
(2)若直线
与
交于
两点,与
交于
两点,其中
在第一象限,是否存在
使
?若存在,求
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系
中,以
轴为始边做两个锐角
,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为![]()
![]()
(1)求
的值; (2)求
的值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(其中
,
,
)的图象的两条相邻对称轴之间的距离为
,且图象上一个最低点为
.
(1)求函数
的解析式;
(2)当
时,求函数
的值域;
(3)若方程
在
上有两个不相等的实数根
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的长轴长为4,且经过点
.
(1)求椭圆的方程;
(2)直线
的斜率为
,且与椭圆相交于
,
两点(异于点
),过
作
的角平分线交椭圆于另一点
.
(i)证明:直线
与坐标轴平行;
(ii)当
时,求四边形
的面积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某人承包了一块矩形土地
用来种植草莓,其中
m,
m.现规划建造如图所示的半圆柱型塑料薄膜大棚
个,每个半圆柱型大棚的两半圆形底面与侧面都需蒙上塑料薄膜(接头处忽略不计),塑料薄膜的价格为每平方米
元;另外,还需在每个大棚之间留下
m宽的空地用于建造排水沟与行走小路(如图中
m),这部分建设造价为每平方米
元.
![]()
(1)当
时,求蒙一个大棚所需塑料薄膜的面积;(本小题结果保留
)
(2)试确定大棚的个数,使得上述两项费用的和最低?(本小题计算中
取
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于三次函数
,给出定义:设
是函数
的导数,
是
的导数,若方程
有实数解
,则称点
为函数
的“拐点”.经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数
.
(1)当
时,求
的值;
(2)若不等式
恒成立,求实数
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com