精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=2,AB=2DC,AB∥DC,∠BCD=90°.
(Ⅰ)求证:PC⊥BC;
(Ⅱ)求多面体A-PBC的体积.
分析:(I)先由线面垂直的定义证明PD⊥BC,再由线面垂直的判定定理证明BC⊥平面PCD,从而证明结论;(II)先将所求三棱锥看做以三角形ABC为底的三棱锥,进而利用已知数据和线面关系,利用三棱锥的体积计算公式计算即可
解答:解:(I)证明:∵PD⊥平面ABCD,BC?平面ABCD
∴PD⊥BC,∵∠BCD=90°
∴CD⊥BC,BC∩CD=C
∴BC⊥平面PCD,又PC?平面PCD
∴PC⊥BC
(II)连接AC,∵PD⊥平面ABCD
∴VA-PBC=VP-ABC=
1
3
×S△ABC×PD
∵AB∥DC,,∠BCD=90°
∴△ABC为直角三角形,且∠B=90°
∵PD=DC=BC=2,AB=2DC
∴VA-PBC=VP-ABC=
1
3
×S△ABC×PD=
1
3
×
1
2
×4×2×2=
8
3

∴多面体A-PBC的体积为
8
3
点评:本题考查了空间几何体中的线面关系,三棱锥的体积计算公式和计算方法,线面垂直的定义和线面垂直的判定定理的运用,空间想象能力和计算能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在四棱锥P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)证明AD⊥PB;
(2)求二面角P-BD-A的正切值大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=4,PA=3,点A在PD上的射影为点G,点E在AB上,平面PEC⊥平面PDC.
(1)求证:AG∥平面PEC;
(2)求AE的长;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面是边长为a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E为PB中点
(1)求证;平面ACE⊥面ABCD;
(2)求三棱锥P-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•武汉模拟)如图,在四棱锥P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距离.

查看答案和解析>>

同步练习册答案