(本题满分12分)
设点P在曲线
上,从原点向A(2,4)移动,如果直线OP,曲线
及直线x=2所围成的面积分别记为
、
。
![]()
(Ⅰ)当
时,求点P的坐标;
(Ⅱ)当
有最小值时,求点P的坐标和最小值.
(1)
;(2)
,P点的坐标为
。
【解析】
试题分析:(Ⅰ)设点P的横坐标为t(0<t<2),则P点的坐标为
,
直线OP的方程为
--------------2分
,
----------6分
因为
,所以
,点P的坐标为
----------7分
(Ⅱ)
----------8分
,令S'=0得
,
----------9分
因为
时,S'<0;
时,S'>0
----------11分
所以,当
时,
,P点的坐标为
----------12分
考点:定积分;微积分定理;利用导数来研究函数的单调性和最值。
点评:在平常做题中,很多同学认为面积就是定积分,定积分就是面积。这里理解是错误的。实际上,我们是用定积分来求面积,但并不等于定积分就是面积。
科目:高中数学 来源: 题型:
| π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR
},B={x|
<1,xÎR }.
(1) 求A、B;
(2) 若
,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数
(
,
为常数),且方程
有两个实根为
.
(1)求
的解析式;
(2)证明:曲线
的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角
中,四边形
是边长为
的正方形,
,
为
上的点,且
⊥平面![]()
(Ⅰ)求证:
⊥平面![]()
(Ⅱ)求二面角
的大小;
(Ⅲ)求点
到平面
的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com