精英家教网 > 高中数学 > 题目详情
在等比数列{an}中,an>0(n∈N*),公比q∈(0,1),a1a5+2a3a5+a2a8=25,且2是a3与a5的等比中项,
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn,当
S1
1
+
S2
2
+…+
Sn
n
最大时,求n的值.
(1)∵a1a5+2a3a5+a2a8=25,且2是a3与a5的等比中项
∴a12q4+2a12q6+a12q8=25   ①
a12q6=4   ②
解①②的a1=16,q=
1
2

an=16•(
1
2
)
n-1
=(
1
2
)
n-5

故数列{an}的通项公式an=(
1
2
)n-5

(2)∵bn=log2an=5-n
Sn=
(9-n)n
2

Sn
n
=
9-n
2

当n=9时
Sn
n
=
9-n
2
=0

S1
1
+
S2
2
+…+
Sn
n
最大时,n=8或9
故n=8或9.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等比数列{an}中,a4=
2
3
 , a3+a5=
20
9

(1)求数列{an}的通项公式;
(2)若数列{an}的公比大于1,且bn=log3
an
2
,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=(  )
A、(2n-1)2
B、
1
3
(2n-1)
C、4n-1
D、
1
3
(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,如果a1+a3=4,a2+a4=8,那么该数列的前8项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,a1=1,8a2+a5=0,数列{
1
an
}
的前n项和为Sn,则S5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等比数列{an}中,an>0且a2=1-a1,a4=9-a3,则a5+a6=
81
81

查看答案和解析>>

同步练习册答案