精英家教网 > 高中数学 > 题目详情
14.已知点A(0,2),B(4,4),$\overrightarrow{OM}={t_1}\overrightarrow{OA}+{t_2}\overrightarrow{AB}$;
(1)若点M在第二或第三象限,且t1=2,求t2取值范围;
(2)若t1=4cosθ,t2=sinθ,θ∈R,求$\overrightarrow{OM}$在$\overrightarrow{AB}$方向上投影的取值范围;
(3)若t1=a2,求当$\overrightarrow{OM}⊥\overrightarrow{AB}$,且△ABM的面积为12时,a和t2的值.

分析 (1)根据平面向量的坐标表示,结合题意,即可求出t2的取值范围;
(2)根据向量投影的定义,利用三角函数的性质求出$\overrightarrow{OM}$在$\overrightarrow{AB}$方向上投影的取值范围;
(3)根据$\overrightarrow{OM}⊥\overrightarrow{AB}$,其数量积为0,结合△ABM的面积列出方程组,求出a和t2的值.

解答 解:(1)点A(0,2),B(4,4),
$\overrightarrow{OM}={t_1}\overrightarrow{OA}+{t_2}\overrightarrow{AB}$=(4t2,2t1+4t2);
若点M在第二或第三象限,且t1=2,
则$\left\{\begin{array}{l}{{4t}_{2}<0}\\{{2×2+4t}_{2}≠0}\end{array}\right.$,
解得t2<0,且t2≠-1;
(2)$\overrightarrow{AB}=({4,4})$,$\overrightarrow{OM}=({4{t_2},2{t_1}+4{t_2}})$,
∴$\overrightarrow{OM}$在$\overrightarrow{AB}$方向上投影为
|$\overrightarrow{OM}$|•cos<$\overrightarrow{OM}$,$\overrightarrow{AB}$>=$\frac{\overrightarrow{OM}•\overrightarrow{AB}}{|\overrightarrow{AB}|}$
=$\frac{3{2t}_{2}+{8t}_{1}}{4\sqrt{2}}$
=4$\sqrt{2}$t2+$\sqrt{2}$t1
=4$\sqrt{2}$(sinθ+cosθ)
=8sin(θ+$\frac{π}{4}$);
∴$\overrightarrow{OM}$在$\overrightarrow{AB}$方向上投影的范围为[-8,8];
(3)$\overrightarrow{OM}=({4{t_2},2{t_1}+4{t_2}})$,$\overrightarrow{OM}•\overrightarrow{AB}=32{t_2}+8{t_1}=0$,
且${t_1}={a^2}$,
∴${t_2}=-\frac{1}{4}{a^2}$,$\overrightarrow{OM}=({-{a^2},{a^2}})$;
∴点M到直线AB:x-y+2=0的距离为:
$d=\frac{{|{-{a^2}-{a^2}+2}|}}{{\sqrt{2}}}=\sqrt{2}|{{a^2}-1}|$;
∴${S_{△ABC}}=\frac{1}{2}|{AB}|•d=\frac{1}{2}×4\sqrt{2}×\sqrt{2}|{{a^2}-1}|=12$,
解得a=±2,t2=-1.

点评 本题考查了平面向量的坐标表示,向量投影以及数量积的运算问题,也考查了三角形面积公式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.a=${∫}_{0}^{\frac{π}{2}}$(-cosx)dx,则(ax+$\frac{1}{2ax}$)9展开式中,x3项的系数为(  )
A.-$\frac{21}{2}$B.-$\frac{63}{8}$C.$\frac{63}{8}$D.$\frac{63}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图程序,输出的结果为(  )
A.513B.1023C.1025D.2047

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.圆O1:(x-1)2+(y-2)2=2,圆O2:(x-2)2+(y-3)2=2相交.求:
(1)相交图形的外围周长;
(2)相交图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC是等腰直角三角形,AC=BC=2,则$\overrightarrow{AB}•\overrightarrow{BC}$=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)根据茎叶图计算样本平均值和方差;
(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需要按墙上的空调造型摆出相同姿势才能穿墙而过,否则会被墙推入水池,类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空间,则该几何体为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知直线?1:ax-y-1=0,?2:x+y+3=0,若?1⊥?2,则a 的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.方程x2-cosx=0的解可视为函数y=cosx的图象与函数y=x2的图象交点的横坐标,则方程${x^2}-4xsin\frac{πx}{2}+1=0$实数解的个数为4.

查看答案和解析>>

同步练习册答案