精英家教网 > 高中数学 > 题目详情
已知等比数列{an}的各项均为正数,且2a1+3a2=1,a32=9a2a6
(1)求数列{an}的通项公式
(2)设bn=log3a1+log3a2+…+log3an,求{bn}的通项公式.
考点:数列的求和,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设出等比数列的公比q,由a32=9a2a6,利用等比数列的通项公式化简后得到关于q的方程,由已知等比数列的各项都为正数,得到满足题意q的值,然后再根据等比数列的通项公式化简2a1+3a2=1,把求出的q的值代入即可求出等比数列的首项,根据首项和求出的公比q写出数列的通项公式即可;
(Ⅱ)把(Ⅰ)求出数列{an}的通项公式代入设bn=log3a1+log3a2+…+log3an,利用对数的运算性质及等差数列的前n项和的公式化简后,即可得到bn的通项公式,求出倒数即为
1
bn
的通项公式,然后根据数列的通项公式列举出数列的各项,抵消后即可得到数列{
1
bn
}的前n项和.
解答: 解:(Ⅰ)设数列{an}的公比为q,由a32=9a2a6得a32=9a42,所以q2=
1
9

由条件可知各项均为正数,故q=
1
3

由2a1+3a2=1得2a1+3a1q=1,所以a1=
1
3

故数列{an}的通项式为an=
1
3n

(Ⅱ)bn=log3a1+log3a2+…+log3an
1
bn
=-
2
n(n+1)
=-2(
1
n
-
1
n+1

1
b1
+
1
b2
+…+
1
bn
=-2[(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)]=-
2n
n+1

所以数列{
1
bn
}的前n项和为-
2n
n+1
点评:此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n项和的公式,会进行数列的求和运算,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

甲、乙、丙三人同时各自解同一题,甲解答正确的概率为
2
3
,乙解答正确的概率为
3
4
,丙解答正确的概率为
4
5
,互相之间不受影响,求:
(1)三个人都解答正确的概率;
(2)只有一人解答正确的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,满足对称轴x=-
1
4
,且f(x)<2x的解集为(-1,
3
2
),求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

先解答(1),再通过结构类比解答(2):
(1)求证:tan(x+
π
4
)=
1+tanx
1-tanx

(2)设x∈R,a为非零常数,且f(x+a)=
1+f(x)
1-f(x)
,试问:f(x)是周期函数吗?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
x+2
,x∈[-5,-3].
(1)判断函数f(x)的单调性,并证明;
(2)求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2.
(1)求证:AB1∥平面BC1D;
(2)过点B作BE⊥AC于点E,求证:直线BE⊥平面AA1C1C
(3)若四棱锥B-AA1C1D的体积为3,求BC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知af(x)+f(-x)=bx,其中a≠±1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y,z为实数,且x+y+z=1,求证:(3x-1)ln
x+1
x-1
+(3y-1)ln
y+1
y-1
+(3z-1)ln
z+1
z-1
>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,sinA:sinB:sinC=2:
6
:(
3
+1),则最小内角是
 

查看答案和解析>>

同步练习册答案