精英家教网 > 高中数学 > 题目详情
18.数列{an},{bn}的通项分别为an=1n(1+$\frac{1}{n}$),bn=$\frac{1}{n}$-$\frac{1}{{n}^{2}}$(n∈N*),证明:an>bn

分析 令f(x)=ln(1+x)-x+x2,(0≤x≤1),利用导数研究函数的单调性即可证明.

解答 解:令f(x)=ln(1+x)-x+x2,(0≤x≤1),
则f′(x)=$\frac{1}{1+x}$-1+2x=$\frac{2{x}^{2}+x}{1+x}$≥0,
∴函数f(x)在[0,1]上单调递增,
∴f(x)≥f(0)=0,
∴ln(1+x)≥x-x2,当且仅当x=0时取等号.
令x=$\frac{1}{n}$(n∈N*),
则$ln(1+\frac{1}{n})$>$\frac{1}{n}-\frac{1}{{n}^{2}}$,∵an=1n(1+$\frac{1}{n}$),bn=$\frac{1}{n}$-$\frac{1}{{n}^{2}}$(n∈N*),
∴an>bn

点评 本题考查了利用导数研究函数的单调性证明不等式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知点M是单位圆x2+y2=1上的一个定点,过M作任意两条互相垂直的直线,分别与圆x2+y2=2交于点A、B和C、D,则|AB|+|CD|的最大值是2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.根据下列各个数列{an}的首项和基本关系式,求其通项公式.
(1)a1=1,an=an-1+3n-1(n≥2);
(2)a1=1,an=$\frac{n-1}{n}$an-1(n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的各项均为正数,其前n项和为Sn,且满足a1=1,an+1=2$\sqrt{{S}_{n}}$+1,n∈N*
(1)求数列{an}的通项公式;
(2)若bn=$\frac{{n}^{2}}{{a}_{n}{a}_{n+1}}$,n∈N*,求Tn=b1+b2+b3+…+bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=4x-m•2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为(  )
A.(-2,2)B.(6,+∞)C.(2,6)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设命题p:f(x)=$\frac{2}{x-m}$在区间(-4,+∞)上是减函数;命题q:关于x的不等式x2-(m+1)x+$\frac{m+7}{4}$≤0在(-∞,+∞)上有解.若(¬p)∧q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\left\{\begin{array}{l}{(3a-1)x+4a,(x≤1)}\\{\frac{a}{x}-a,(x>1)}\end{array}\right.$是(-∞,+∞)上减函数,那么a的取值范围是(  )
A.(0,1)B.(0,$\frac{1}{3}$)C.[$\frac{1}{7}$,$\frac{1}{3}$)D.[$\frac{1}{7}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.定义在R上的偶函数f(x)满足对任意x∈R,都有f(x+8)=f(x)+f(4),且x∈[0,4]时,f(x)=4-x,则f(2015)的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.对任意不全为零的实数x,y,设f(x,y)=min{x,$\frac{x}{{x}^{2}+{y}^{2}}$},求f(x,y)的最大值.

查看答案和解析>>

同步练习册答案