本小题满分12分)
已知函数f (x)=x3+ ax2-bx (a, b∈R) .
(1)若y=f (x)图象上的点(1,-)处的切线斜率为-4,求y=f (x)的极大值;
(2)若y=f (x)在区间[-1,2]上是单调减函数,求a + b的最小值.
解:(1)∵f ′(x)=x2+2ax-b ,
∴ 由题意可知:f ′(1)=-4且f (1)= -,
∴ 解得:…………………………2分
∴ f (x)=x3-x2-3x。
f ′(x)=x2-2x-3=(x+1)(x-3).
令f ′(x)= 0,得x1=-1,x2=3,……………3分
由此可知:
x |
(-∞,-1) |
-1 |
(-1, 3) |
3 |
(3, +∞) |
f ’(x) |
+ |
0 |
- |
0 |
+ |
f (x) |
↗ |
f (x)极大5/3 |
↘ |
f (x) 极小 |
↗ |
∴ 当x=-1时, f (x)取极大值. …………………………6分
(2) ∵y=f (x)在区间[-1,2]上是单调减函数,
∴f ′(x)=x2+2ax-b≤0在区间[-1,2]上恒成立.
根据二次函数图象可知f ′(-1)≤0且f ′(2)≤0,即:
也即…………………9分
作出不等式组表示的平面区域如图:
当直线z=a+b经过交点P(-, 2)时,
z=a+b取得最小值z=-+2=,
∴z=a+b取得最小值为……………………12分
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com