精英家教网 > 高中数学 > 题目详情
.如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则S1:S2=_____  .
1

分析:比较表面积的大小,可以通过体积进行转化比较;也可以先求表面积,然后比较.
解:连OA、OB、OC、OD,
则VA-BEFD=VO-ABD+VO-ABE+VO-BEFD+VO-AFD
VA-EFC=VO-AFC+VO-AEC+VO-EFC
又VA-BEFD=VA-EFC
而每个三棱锥的高都是原四面体的内切球的半径,又面AEF公共,
故SABD+SABE+SBEFD+SADF=SADC+SAEC+SEFC
所以:S1:S2=1
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,ABC和DBC所在的平面互相垂直,且AB=BC=BD,CBA=DBC= 60°,(1) 求证:直线AD⊥直线BC;(2)求直线AD与平面BCD所成角的大小。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,四棱锥的底面为一直角梯形,其中
底面的中点.

(1)求证://平面
(2)若平面,求异面直线所成角的余弦值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

两个平行平面间的距离为4,一条直线与两个平面所成角为45°,则这两条直线被两平行平面所截得的线段长为       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线平面,直线平面,有下面四个命题:(1)//
(2)//;(3)//;(4)//; 其中正确的命题
 .      .    .     .  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知六棱锥的底面是正六边形,平面.则下列结论不正确的是
A.平面B.平面
C.平面D.平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在底面为正方形的四棱锥V-ABCD中,侧棱VA垂直于底面ABCD,且VA=AB,点M
为VA的中点,则直线VC与平面MBC所成角的正弦值是                 (   )
A                 B             C               D

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正四棱锥的底面边长为1,高为3,则它的体积是                

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理科)有共同底边的等边三角形所在平面互相垂直,则异面直线所成角的余弦值为                            (  )
A         B         C          D

查看答案和解析>>

同步练习册答案