精英家教网 > 高中数学 > 题目详情
(理科)有共同底边的等边三角形所在平面互相垂直,则异面直线所成角的余弦值为                            (  )
A         B         C          D
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

.如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则S1:S2=_____  .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图, 在四面体ABOC中, , 且.

(Ⅰ)设为的中点, 证明: 在上存在一点,使,并计算
(Ⅱ)求二面角的平面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(本小题满分12分)
如图,在四棱锥P-ABCD中,则面PAD⊥底面ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BCAD,ABAD,AD=2AB=2BC=2,OAD中点.
(Ⅰ)求证:PO⊥平面ABCD
(Ⅱ)求异面直线PBCD所成角的大小;
(Ⅲ)线段AD上是否存在点Q,使得它到平面PCD的距离为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

..(本小题满分12分)如图,在正方体中,
分别为棱的中点.
(1)求证:∥平面
(2)求证:平面⊥平面
(3)如果,一个动点从点出发在正方体的
表面上依次经过棱上的点,最终又回到点,指出整个路线长度的最小值并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图4,四棱锥P—ABCD中,底面ABCD是直角梯形,AB//CD,,AB=AD=2CD,侧面底面ABCD,且为等腰直角三角形,,M为AP的中点。

(1)求证:
(2)求证:DM//平面PCB。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCDA1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为(      )

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图1,直角梯形ABCD中,E,F分别为边AD和BC上的点,且EF//AB,AD=2AE=2AB=4FC=4将四边形EFCD沿EF折起(如图2),使AD=AE.
(Ⅰ)求证:BC//平面DAE;
(Ⅱ)求四棱锥D—AEFB的体积;
(Ⅲ)求面CBD与面DAE所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为1的正方体ABCD-A1B1C1D1中,M 为BB1的中点,则点D到直线A1M的距离为            
A.B.C.D.

查看答案和解析>>

同步练习册答案