精英家教网 > 高中数学 > 题目详情
.如图1,直角梯形ABCD中,E,F分别为边AD和BC上的点,且EF//AB,AD=2AE=2AB=4FC=4将四边形EFCD沿EF折起(如图2),使AD=AE.
(Ⅰ)求证:BC//平面DAE;
(Ⅱ)求四棱锥D—AEFB的体积;
(Ⅲ)求面CBD与面DAE所成锐二面角的余弦值.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

本题满分12分)
如图,已知矩形ABCD所在平面外一点PPA⊥平面ABCDEF分别是ABPC的中点.

(1)求证:EF∥平面PAD
(2)求证:EFCD

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
用平行于四面体的一组对棱的平面截此四面体(如图).
(1)求证:所得截面是平行四边形;
(2)如果.求证:四边形的周长为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥中,,平面平面是线段上一点,
(1)证明:平面
(2)设三棱锥与四棱锥的体积分别为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(、(8分)如图,在底面是直角梯形的四棱锥S-ABCD中,


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,为一个等腰三角形形状的空地,腰的长为(百米),底的长为(百米).现决定在空地内筑一条笔直的小路(宽度不计),将该空地分成一个四边形和一个三角形,设分成的四边形和三角形的周长相等、面积分别为

⑴若小路一端的中点,求此时小路的长度;
⑵求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在底面为正方形的四棱锥V-ABCD中,侧棱VA垂直于底面ABCD,且VA=AB,点M
为VA的中点,则直线VC与平面MBC所成角的正弦值是                 (   )
A                 B             C               D

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(理科)有共同底边的等边三角形所在平面互相垂直,则异面直线所成角的余弦值为                            (  )
A         B         C          D

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以下四个命题中:
①垂直于同一条直线的两条直线平行;
②空间中如果一个角的两边分别垂直于另一个角的两边,那么这两个角相等或互补;
③已知是异面直线,直线分别与相交于两点,则是异面直线;
④到任意一个三棱锥的四个顶点距离相等的平面有且只有7个.
其中不正确的命题的序号是                 .

查看答案和解析>>

同步练习册答案