精英家教网 > 高中数学 > 题目详情

【题目】某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价x(元)

8

8.2

8.4

8.6

8.8

9

销量y(件)

90

84

83

80

75

68

1)求回归直线方程bxa,其中b=-20ab

2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入成本)

【答案】12

【解析】试题分析:(I)计算平均数,利用b=-20,即可求得回归直线方程;(II)设工厂获得的利润为L元,利用利润=销售收入-成本,建立函数,利用配方法可求工厂获得的利润最大

试题解析:(188.28.48.68.89)=8.5

908483807568)=80

a208020×8.5250

2)工厂获得利润z=(x4y=-20x2330x1000

x时,zmax361.25(元)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.

2014年 2015年 2016年

根据该折线图,下列结论错误的是( )

A. 年接待游客量逐年增加

B. 月接待游客量逐月增加

C. 各年的月接待游客量高峰期大致在7,8月

D. 各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 的定义域是R,对于任意实数 ,恒有,且当 时,

1求证: ,且当 时,有

2判断 R上的单调性;

3设集合AB,若A∩B,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCD﹣A′B′C′D′的棱长为1,E、F分别是棱是AA′,CC′的中点,过直线EF的平面分别与棱BB′,DD′交于M,N,设BM=x,x∈[0,1],给出以下四种说法:

(1)平面MENF平面BDD′B′;

(2)当且仅当x=时,四边形MENF的面积最小;

(3)四边形MENF周长L=f(x),x∈[0,1]是单调函数;

(4)四棱锥C′﹣MENF的体积V=h(x)为常函数,以上说法中正确的为( )

A. (2)(3) B. (1)(3)(4) C. (1)(2)(4) D. (1)(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,C、D是以AB为直径的圆上两点,AB=2AD=2,AC=BC,F 是AB上一点,且AF=AB,将圆沿直径AB折起,使点C在平面ABD的射影E在BD上,已知,

(1)求证:AD⊥平面BCE;

(2)求三棱锥A﹣CFD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017全国,19)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:

旧养殖法

新养殖法

(1)A表示事件旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,设命题p:函数y=ax在R上单调递减,q:函数y=且y>1恒成立,若p∧q为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知菱形ABCD的边长为6,∠ABD=30°,点E、F分别在边BC、DC上,BC=2BE,CD=λCF.若 =﹣9,则λ的值为(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f1(x)=Asin(ωxφ)(A>0,ω>0,|φ|<)的一段图象过点(0,1),如图所示.

(1)求函数f1(x)的表达式;

(2)将函数yf1(x)的图象向右平移个单位,得函数yf2(x)的图象,求yf2(x)的最大值,并求出此时自变量x的集合.

查看答案和解析>>

同步练习册答案