精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且中点.

(1)证明://平面
(2)证明:平面平面
(3)求二面角的正弦值.
(1) 结于点,连结,那么根据中位线性质可知// ,那么结合线面平行的判定定理来得到。
(2)建立空间直角坐标系,然后结合空间向量的平面的法向量,借助于法向量的垂直来证明面面垂直。
(3)

试题分析:解:(1)

证明:连结于点,连结                 ……………………1分
中点,中点,
//                                           ……………………2分
平面平面,        ………3分
//平面.                       
(2)证明:
⊥平面        
平面
.                          …………4分
在正方形, …5分
平面.                                 ……………………6分
平面
∴平面平面.                            ……………………7分
(3)如图,以为坐标原点,所在直线分别为轴,轴,轴建立空
间直角坐标系.

可知的坐标分别为
(0, 0, 0), (2, 0, 0),(2, 2, 0),
(0, 2, 0), (0, 0, 2), (0, 1, 1) .………9分
平面,∴是平面的法向量,=(0, 0, 2).
设平面的法向量为
, ,
 即                       
∴ 
∴ 令,则.                            ………………11分
,           
二面角的正弦值为                      …………………12分
点评:解决证明试题,一般要运用线面平行的判定定理以及面面垂直的判定定理,来分析得到,而对于求解二面角一般可以运用定义法,或者是三垂线定理法,以及向量法来表示得到,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,已知球的面上有四点平面,,
,则球的体积与表面积的比为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分l2分)
如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.

(1)求证:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正方体中,下列结论错误的是
A.∥平面B.平面
C.D.异面直线所成的角是45º

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题15分)如图,在四棱锥中,底面 , ,的中点。

(Ⅰ)证明:
(Ⅱ)证明:平面
(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知直三棱柱中,,若中点.
(Ⅰ)求证:∥平面
(Ⅱ)求异面直线所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
如图,已知三棱锥OABC的侧棱OAOBOC两两垂直,且OA=2,OB=3,OC=4,EOC的中点.

(1)求异面直线BEAC所成角的余弦值;
(2)求二面角ABEC的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题:①已知直线,若,则;②是异面直线,是异面直线,则不一定是异面直线;③过空间任一点,有且仅有一条直线和已知平面垂直;④平面//平面,点,直线//,则;其中正确的命题的个数有( )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,长方体中,,点上,且

(Ⅰ)证明:平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

同步练习册答案