精英家教网 > 高中数学 > 题目详情
下列命题:①已知直线,若,则;②是异面直线,是异面直线,则不一定是异面直线;③过空间任一点,有且仅有一条直线和已知平面垂直;④平面//平面,点,直线//,则;其中正确的命题的个数有( )
A.0B.1C.2D.3
C

试题分析:对于命题1,垂直于同一条直线的两个直线可能平行也可能异面直线,因此不成立,
命题2中,由于是异面直线,是异面直线,那么可能a,c平行,错误。
命题3中,由于线面的垂直关系可知,过空间任一点,有且仅有一条直线和已知平面垂直成立。
命题4中,平面//平面,点,直线//,则,符合面面平行的性质定理,故选C.
点评:解决该试题的关键是对于空间的点线面的位置关系的理解和准确的判定, 主要是异面直线概念的判定以及线面的垂直关系,和线面平行 的判定综合运用,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
在如图的多面体中,⊥平面,,   的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知:如图,在四棱锥中,四边形为正方形,,且中点.

(1)证明://平面
(2)证明:平面平面
(3)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,⊥平面=90°,,点上,点E在BC上的射影为F,且

(1)求证:
(2)若二面角的大小为45°,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中正确的是(  )
A.平行于平面内两条直线的平面,一定平行于这个平面
B.一条直线平行于一个平面内的无数条直线,则这条直线与该平面平行
C.两个平面分别与第三个平面相交,若交线平行则两平面平行
D.在两个平行平面中,一平面内的一条直线必平行于另一个平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)如图,在六面体中,.

求证:(1);(2).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四面体S—ABC中,E为SA的中点,F为的中心,则直线EF与平面ABC所成的角的正切值是                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥P-ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是
A.PB⊥ADB.平面PAB⊥平面PBC
C.直线BC∥平面PAED.直线PD与平面ABC所成角为450

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分) 如图,P—ABCD是正四棱锥,是正方体,其中 

(1)求证:
(2)求平面PAD与平面所成的锐二面角的余弦值;

查看答案和解析>>

同步练习册答案