精英家教网 > 高中数学 > 题目详情
(2008•湖北模拟)已知f(x)=3sinωxcosωx-
3
cos2ωx+2sin2(ωx-
π
12
)+
3
12
(ω>0)

(1)求函数f(x)值域;
(2)若对任意的a∈R,函数y=f(x)在(a,a+π]上的图象与y=1有且仅有两个不同的交点,试确定ω的值(不必证明)并写出该函数在[0,π]上的单调区间.
分析:(1)利用三角函数的恒等变换化简f(x)的解析式为2sin(2ωx-
π
3
)+1
,由正弦函数的值域从而得到f(x)值域.
(2)由题意可得f(x)周期为π,求出ω=1,从而得到f(x)=2sin(2x-
π
3
)+1
,由此写出函数在[0,π]上的单调区间.
解答:解:(1)f(x)=
3
2
sin2ωx-
3
2
(2cos2ωx-1)+1-cos(2ωx-
π
6
)
 
=
3
(
3
2
sin2ωx-
1
2
cos2ωx)-cos(2ωx-
π
6
)+1

=
3
sin(2ωx-
π
6
)-cos(2ωx-
π
6
)+1
  (2分)
=2[
3
2
sin(2ωx-
π
6
)-
1
2
cos(2ωx-
π
6
)]+1

=2sin(2ωx-
π
3
)+1
. (6分)
∴f(x)值域为[-1,3].
(2)由题意可得 f(x)周期为π,∴ω=1.(8分)   故 f(x)=2sin(2x-
π
3
)+1

故 f(x)在[0,
5
12
π]
[
11
12
π,π]
上单调递增,在[
5
12
π,
11
12
π]
上单调递减.(12分)
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的值域和单调性,化简函数f(x)的解析式为2sin(2ωx-
π
3
)+1
,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•湖北模拟)若等比数列的各项均为正数,前n项之和为S,前n项之积为P,前n项倒数之和为M,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知f(x)=ax3+bx2+cx+d为奇函数,且在点(2,f(2))处的切线方程为9x-y-16=0.
(1)求f(x)的解析式;
(2)若y=f(x)+m的图象与x轴仅有一个公共点,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为g(n)=
k
n+1
(k>0,k为常数,n∈Z且n≥0),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.
(1)求k的值,并求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(1,2),向量
b
=(x,-2),且
a
∥(
a
-
b
)
,则实数x等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)已知向量
a
=(2cosx,tan(x+α))
b
=(
2
sin(x+α),tan(x-α))
,已知角α(α∈(-
π
2
π
2
))
的终边上一点P(-t,-t)(t≠0),记f(x)=
a
b

(1)求函数f(x)的最大值,最小正周期;
(2)作出函数f(x)在区间[0,π]上的图象.

查看答案和解析>>

同步练习册答案