已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α<x<π.
(1)若α=,求函数f(x)=b·c的最小值及相应x的值;
(2)若a与b的夹角为,且a⊥c,求tan 2α的值.
(1)最小值为-,相应x的值为(2)-
【解析】(1)∵b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),α=,
∴f(x)=b·c=cos xsin x+2cos xsin α+sin xcos x+2sin xcos α=2sin xcos x+ (sin x+cos x).
令t=sin x+cos x,则2sin xcos x=t2-1,且-1<t<.
则y=t2+t-1=2-,-1<t<,
∴t=-时,ymin=-,此时sin x+cos x=-,即sin=-,
∵<x<π,∴<x+<π,∴x+=,∴x=.
∴函数f(x)的最小值为-,相应x的值为.
(2)∵a与b的夹角为,∴cos ==cos αcos x+sin αsin x=cos(x-α).
∵0<α<x<π,∴0<x-α<π,∴x-α=.
∵a⊥c,∴cos α(sin x+2sin α)+sin α(cos x+2cos α)=0,
∴sin(x+α)+2sin 2α=0,即sin+2sin 2α=0,
∴sin 2α+cos 2α=0,∴tan 2α=-.
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题5第2课时练习卷(解析版) 题型:选择题
双曲线x2-my2=1的实轴长是虚轴长的2倍,则m= ( )
A. B. C.2 D.4
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题4第1课时练习卷(解析版) 题型:选择题
一个简单几何体的主视图、俯视图如图所示,则其左视图不可能为( )
A.正方形 B.圆
C.等腰三角形 D.直角梯形
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题3第1课时练习卷(解析版) 题型:解答题
根据如图所示的程序框图,将输出的x,y值依次分别记为x1,x2,…,xk,…;y1,y2,…,yk,….
(1)分别求数列{xk}和{yk}的通项公式;
(2)令zk=xkyk,求数列{zk}的前k项和Tk,其中k∈N*,k≤2 007.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题3第1课时练习卷(解析版) 题型:选择题
若数列{an}是等差数列,则数列{bn}也为等差数列.类比这一性质可知,若正项数列{cn}是等比数列,且{dn}也是等比数列,则dn的表达式应为( )
A.dn= B.dn=
C.dn= D.dn=
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题2第3课时练习卷(解析版) 题型:填空题
在△ABC中,AB=10,AC=6,O为BC的垂直平分线上一点,则·=________.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题2第3课时练习卷(解析版) 题型:选择题
已知向量=(cos α,sin α),将向量绕坐标原点O逆时针旋转θ角得到向量 (0°<θ<90°),则下列说法不正确的为( )
A.|+|=|-| B.||+||>|-|
C.(+)⊥(-) D. 、在+方向上的投影相等
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题2第2课时练习卷(解析版) 题型:选择题
在△ABC中,∠ABC=,AB=,BC=3,则sin∠BAC=( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2014年高考数学(文)二轮专题复习与测试专题1第4课时练习卷(解析版) 题型:选择题
设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于( )
A.{x|0<x<1} B.{x|0<x≤1}
C.{x|1<x<2} D.{x|2<x<3}
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com