精英家教网 > 高中数学 > 题目详情
1.已知抛物线y2=16x的焦点为F,准线为l,P是l上一点,Q是直线PF与抛物线的交点,若$\overrightarrow{FP}$=4$\overrightarrow{FQ}$,则|QF|=(  )
A.$\frac{11}{2}$B.$\frac{9}{2}$C.5D.6

分析 求得直线PF的方程,与y2=16x联立可得x=2,利用|QF|=d可求.

解答 解:设Q到l的距离为d,则|QF|=d,
∵$\overrightarrow{FP}$=4$\overrightarrow{FQ}$,
∴|PQ|=3d,
∴直线PF的斜率为-2$\sqrt{2}$,
∵F(4,0),
∴直线PF的方程为y=-2$\sqrt{2}$(x-4),
与y2=16x联立可得x=2,
∴|QF|=d=2+4=6.
故选:D.

点评 本题考查抛物线的简单性质,考查直线与抛物线的位置关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直线2x+y-2=0被圆x2+y2=5截得的弦长为$\frac{{2\sqrt{105}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知二次函数f(x)=ax2+2x+c的对称轴为x=1,g(x)=x+$\frac{1}{x}$(x>0).
(1)求函数g(x)的最小值及取得最小值时x的值;
(2)试确定c的取值范围,使g(x)-f(x)=0至少有一个实根;
(3)当c=m-3时,F(x)=f(x)-(m+2)x,对任意x∈(1,2]有F(x)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设f(x)=x2-2x,x∈[t,t+1](t∈R),求函数f(x)的最小值g(t)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个袋子里装有7个球,其中有红球4个,编号分别为1,2,3,4;白球3个,编号分别为1,2,3.从袋子中任取4个球(假设取到任何一个球的可能性相同).
(1)求取出的4个球中,含有编号为3的球的概率;
(2)在取出的4个球中,红球编号的最大值设为X,求随机变量X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知球的半径为5,球心到截面的距离为3,则截面圆的面积为(  )
A.B.C.D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在区间[2a+3,1-a]上的函数f(x)的图象关于原点对称,则g(x)=ax+4+a在R上(  )
A.增函数,奇函数B.减函数,奇函数
C.非奇非偶的增函数D.非奇非偶的减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线x-y+1=0与圆C:x2+y2-4x-2y+m=0交于A,B两点;
(1)求线段AB的垂直平分线的方程;
(2)若|AB|=2$\sqrt{2}$,求m的值;
(3)在(2)的条件下,求过点P(4,4)的圆C的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等比数列{an},各项an>0,公比为q.
(1)设bn=logcan(c>0,c≠1),求证:数列{bn}是等差数列,并求出该数列的首项b1及公差d;
(2)设(1)中的数列{bn}单调递减,求公比q的取值范围.

查看答案和解析>>

同步练习册答案