精英家教网 > 高中数学 > 题目详情
20.(1)“已知函数f(x)=x2-mx+1对一切实数x,f(x)>0恒成立”;
(2)“关于x的不等式x2<9-m2有实数解”.
若以上结论中(1)错误并且(2)正确,则实数m的取值范围为(-3,-2]∪[2,3).

分析 分别求出(1)、(2)正确的m的范围,再由补集思想求出(1)错误的m的范围,取交集得答案.

解答 解:由函数f(x)=x2-mx+1对一切实数x,f(x)>0恒成立,
可得△=(-m)2-4<0,即-2<m<2;
由关于x的不等式x2<9-m2有实数解,
可得9-m2>0,即-3<m<3.
若(1)错误,则m≤-2或m≥2,
∴使得(1)错误并且(2)正确的实数m的取值范围为(-3,-2]∪[2,3).
故答案为:(-3,-2]∪[2,3).

点评 本题考查命题的真假判断与应用,考查恒成立问题的求解方法,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数$f(x)=cos(x-\frac{π}{4})$的图象的一条对称轴方程是(  )
A.$x=\frac{π}{4}$B.$x=\frac{π}{2}$C.$x=\frac{3π}{4}$D.$x=\frac{3π}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若a,b∈R+,4a+b=1,则$\frac{1}{a}+\frac{1}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设集合M={x|x>1},P={x|x<4},那么“x∈M∩P”是“x∈M或x∈P”的(  )
A.必要不充分条件B.充分不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.集合$M=\left\{{\left.m\right|\frac{10}{m+1}∈Z,m∈{N^*}}\right\}$用列举法表示{1,4,9}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,f(x)在区间[0,2]上满足f(x)=x(x-2).
(1)当k=-1时,求f(-1),f(2.5)的值;
(2)求f(x)在区间[-2,4]上的解析式;
(3)求f(x)在区间[-2,4]上的最大值,并求出相应的自变量的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知随机事件A与B,经计算得到K2的范围是3.841<K2<6.635,则(如表是K2的临界值表,供参考)(  )
P(K2≥x00.150.100.050.0250.0100.0050.001
x02.0722.7063.8415.0246.6357.87910.828
A.有95% 把握说事件A与B有关B.有95% 把握说事件A与B无关
C.有99% 把握说事件A与B有关D.有99% 把握说事件A与B无关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设复数z满足|z-3-4i|=1,其中i为虚数单位,则|z|的最大值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}为等差数列,且a3=5,a5=9,数列{bn}的前n项和Sn=$\frac{2}{3}$bn+$\frac{1}{3}$.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)设cn=an|bn|,求数列{cn}的前n项的和Tn

查看答案和解析>>

同步练习册答案