精英家教网 > 高中数学 > 题目详情
(2013•湛江一模)如图,已知点M0(x0,y0)是椭圆C:
y2
2
+x2
=1上的动点,以M0为切点的切线l0与直线y=2相交于点P.
(1)过点M0且l0与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;
(2)在y轴上是否存在定点T,使得以PM0为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.
(参考定理:若点Q(x1,y1)在椭圆
y2
a2
+
x2
b2
=1(a>b>0)
,则以Q为切点的椭圆的切线方程是:
y1y
a2
+
x1x
b2
=1(a>b>0)
分析:(1)先求切线的斜率,可得直线l1的方程,确定l1与y轴交点纵坐标,即可求得l1与y轴交点纵坐标的取值范围;
(2)确定P的坐标,利用以PM0为直径的圆恒过点T,结合向量知识,即可求得结论.
解答:解:(1)由椭圆得:y=
2(1-x2)
,y'=-2x(2-2x2)-
1
2

切线的斜率为:k=
-2x0
2-2x02

所以,直线l1的方程为:y-y0=
2-2x02
2x0
(x-x0)

所以l1与y轴交点纵坐标为:y=
2-2x02
-
2-2x02
2
=
2-2x02
2

因为-1≤x0≤1,所以,0≤x02≤10≤2-2x02≤2
所以,当切点在第一、二象限时,l1与y轴交点纵坐标的取值范围为:0≤y≤
2
2

则利用对称性可知l1与y轴交点纵坐标的取值范围为:-
2
2
≤y≤
2
2

(2)依题意,可得∠PTM0=90°,设存在T(0,t),M0(x0,y0
由(1)得点P的坐标(
1-y0
x0
,2),
PT
M0T
=0
可得(0-
1-y0
x0
,t-2)•(-x0,t-y0)=0,
∴1-y0+(t-2)(t-y0)=0,
∴y0(1-t)+(t-1)2=0
∴t=1
∴存在点T(0,1)满足条件.
点评:本题考查直线与椭圆的位置关系,考查向量知识的运用,考查学生的运算能力,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•湛江一模)在△ABC中,∠A=
π
3
,AB=2,且△ABC的面积为
3
2
,则边AC的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)如图圆上的劣弧
CBD
所对的弦长CD=
3
,弦AB是线段CD的垂直平分线,AB=2,则线段AC的长度为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)点P是圆x2+y2+2x-3=0上任意一点,则点P在第一象限的概率为
1
6
-
3
1
6
-
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)下列四个论述:
(1)线性回归方程y=bx+a必过点(
.
x
.
y

(2)已知命题p:“?x∈R,x2≥0“,则命题¬p是“?x0∈R,
x
2
0
<0“
(3)函数f(x)=
x2(x≥1)
x(x<1)
在实数R上是增函数;
(4)函数f(x)=sinx+
4
sinx
的最小值是4
其中,正确的是
(1)(2)(3)
(1)(2)(3)
(把所有正确的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•湛江一模)已知函数f(x)=ex-1,g(x)=
x
+x
,其中e是自然对数的底,e=2.71828….
(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;
(2)求方程f(x)=g(x)根的个数,并说明理由;
(3)若数列{an}(n∈N*)满足a1=a(a>0)(a为常数),an+13=g(an),证明:存在常数M,使得对于任意n∈N*,都有an≤M.

查看答案和解析>>

同步练习册答案