精英家教网 > 高中数学 > 题目详情

如图,已知平行四边形ABCD中,BC=2,BD⊥CD,四边形ADEF为正方形,平面ADEF⊥平面ABCD.记CD=x,V(x)表示四棱锥F-ABCD的体积.

(1)求V(x)的表达式.
(2)求V(x)的最大值.

(1) V(x)= x(0<x<2)   (2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在五面体中,四边形是边长为的正方形,平面的中点.

(1)求证:平面
(2)求证:平面
(3)求五面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.

(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一个几何体的三视图如下图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.

(1)求该几何体的体积V
(2)求该几何体的表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足.

(1)求证:
(2)在棱上确定一点,使四点共面,并求此时的长;
(3)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥PABCD的底面ABCD是边长为2的菱形,∠BAD=60°,已知PBPD=2,PA.
 
(1)证明:PCBD
(2)若EPA的中点,求三棱锥PBCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在直三棱柱中,分别是的中点.

(1)求证:平面;
(2)求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面,四边形是矩形,,点分别是的中点.

(Ⅰ)求三棱锥的体积;
(Ⅱ)求证:平面
(Ⅲ)若点为线段中点,求证:∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在四棱锥P-ABCD中,△PBC为正三角形,PA⊥底面ABCD,其三视图如图所示,俯视图是直角梯形.
 
(1)求正视图的面积;
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

同步练习册答案