分析 (Ⅰ)依题意,可得,$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{6{a}_{1}q={a}_{1}+3+{a}_{1}{q}^{2}+4}\end{array}\right.$,解得首项与公比,即可求得等比数列{an}的通项公式an;
(Ⅱ)由an=2n-1可得bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n}$,cn=bn(bn+1-bn+2)=($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),利用裂项法与分组求和法即可求得数列{cn}的前n项和Tn.
解答 解:(Ⅰ)依题意,$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{6{a}_{1}q={a}_{1}+3+{a}_{1}{q}^{2}+4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$,
∴数列{an}的通项公式an=2n-1;
(Ⅱ)∵bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n}$,cn=bn(bn+1-bn+2)=$\frac{1}{n}$($\frac{1}{n+1}$-$\frac{1}{n+2}$)=($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=c1+c2+…+cn=[(1-$\frac{1}{2}$)-$\frac{1}{2}$($\frac{1}{1}$-$\frac{1}{3}$)]+[($\frac{1}{2}$-$\frac{1}{3}$)-$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$)]+…+[($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)]
=(1-$\frac{1}{n+1}$)-$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{n}{n+1}$-$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{1}{4}$-$\frac{1}{{2n}^{2}+6n+4}$.
点评 本题考查数列的求和,考查等差数列的通项公式与求和公式的应用,突出考查裂项法求和与分组求和,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | p真q假 | B. | p 假q真 | C. | p真q真 | D. | p 假q假 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当-2<a<2时,函数f(x)无极值 | B. | 当a>2时,f(x)的极小值小于0 | ||
| C. | 当a=2时,x=1是f(x)的一个极值点 | D. | ?a∈R,f(x)必有零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{5π}{21}$,0) | B. | ($\frac{π}{21}$,0) | C. | ($\frac{π}{42}$,0) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com