精英家教网 > 高中数学 > 题目详情
6.数列{an}是公比为q(q>1)的等比数列,其前n项和为Sn.已知S3=7,且3a2是a1+3与a3+4的等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$,cn=bn(bn+1-bn+2),求数列{cn}的前n项和Tn

分析 (Ⅰ)依题意,可得,$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{6{a}_{1}q={a}_{1}+3+{a}_{1}{q}^{2}+4}\end{array}\right.$,解得首项与公比,即可求得等比数列{an}的通项公式an
(Ⅱ)由an=2n-1可得bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n}$,cn=bn(bn+1-bn+2)=($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),利用裂项法与分组求和法即可求得数列{cn}的前n项和Tn

解答 解:(Ⅰ)依题意,$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}q+{a}_{1}{q}^{2}=7}\\{6{a}_{1}q={a}_{1}+3+{a}_{1}{q}^{2}+4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$,
∴数列{an}的通项公式an=2n-1
(Ⅱ)∵bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$=$\frac{1}{n}$,cn=bn(bn+1-bn+2)=$\frac{1}{n}$($\frac{1}{n+1}$-$\frac{1}{n+2}$)=($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=c1+c2+…+cn=[(1-$\frac{1}{2}$)-$\frac{1}{2}$($\frac{1}{1}$-$\frac{1}{3}$)]+[($\frac{1}{2}$-$\frac{1}{3}$)-$\frac{1}{2}$($\frac{1}{2}$-$\frac{1}{4}$)]+…+[($\frac{1}{n}$-$\frac{1}{n+1}$)-$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$)]
=(1-$\frac{1}{n+1}$)-$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{n}{n+1}$-$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)
=$\frac{1}{4}$-$\frac{1}{{2n}^{2}+6n+4}$.

点评 本题考查数列的求和,考查等差数列的通项公式与求和公式的应用,突出考查裂项法求和与分组求和,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合A={-2,-1,0,1,2},B={x|0≤x≤1},那么A∩B等于(  )
A.{0}B.{1}C.{0,1}D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:若m>0,则关于 x的方程x2+x-m=0有实根,q是p的逆命题,下面结论正确的是(  )
A.p真q假B.p 假q真C.p真q真D.p 假q假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=sinxcosx-$\sqrt{3}$cos2x的图象可由函数g(x)=sin(2x+$\frac{π}{3}$)-$\frac{{\sqrt{3}}}{2}$的图象向右平移k(k>0)个单位得到,则k的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=lnx+\frac{1}{2}{x^2}-ax+1$,下列结论中错误的是(  )
A.当-2<a<2时,函数f(x)无极值B.当a>2时,f(x)的极小值小于0
C.当a=2时,x=1是f(x)的一个极值点D.?a∈R,f(x)必有零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知:$\overrightarrow{OA}$=(-3,1),$\overrightarrow{OB}$=(0,5),且$\overrightarrow{AC}$∥$\overrightarrow{OB}$,$\overrightarrow{BC}$⊥$\overrightarrow{AB}$,则点C的坐标为$(-3,\frac{29}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在平面直角坐标系xOy中,B是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上顶点,直线y=b与椭圆右准线交于点A,若以AB为直径的圆与x轴的公共点都在椭圆内部,则椭圆的离心率e的取值范围是($\frac{\sqrt{5}-1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在正方体中ABCD-A1B1C1D1,E、F分别为AB,AA1的中点.求证:
(1)EF∥D1C;
(2)CE,D1F,DA三线共点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=$\frac{1}{3}$tan(-7x+$\frac{π}{3}$)的一个对称中心是(  )
A.($\frac{5π}{21}$,0)B.($\frac{π}{21}$,0)C.($\frac{π}{42}$,0)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

同步练习册答案