精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=lnx+\frac{1}{2}{x^2}-ax+1$,下列结论中错误的是(  )
A.当-2<a<2时,函数f(x)无极值B.当a>2时,f(x)的极小值小于0
C.当a=2时,x=1是f(x)的一个极值点D.?a∈R,f(x)必有零点

分析 根据函数的单调性以及a的范围分别对各个选项进行判断即可.

解答 解:(1)f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$+x-a≥2-a,
故-2<a<2时,f′(x)>0,
f(x)在(0,+∞)递增,函数无极值,
故A正确;
(2)a>2时,f′(x)=$\frac{{x}^{2}-ax+1}{x}$,
令g(x)=x2-ax+1,△=a2-4>0,
x1=$\frac{a-\sqrt{{a}^{2}-4}}{2}$>0,x2=$\frac{a+\sqrt{{a}^{2}-4}}{2}$,
故f(x)在(0,$\frac{a-\sqrt{{a}^{2}-4}}{2}$)递增,在$\frac{a-\sqrt{{a}^{2}-4}}{2}$,$\frac{a+\sqrt{{a}^{2}-4}}{2}$)递减,在($\frac{a+\sqrt{{a}^{2}-4}}{2}$,+∞)递增;
故f(x)的极小值是f($\frac{a+\sqrt{{a}^{2}-4}}{2}$)=ln$\frac{a+\sqrt{{a}^{2}-4}}{2}$-$\frac{{a}^{2}}{4}$-$\frac{a\sqrt{{a}^{2}-4}}{4}$+$\frac{1}{2}$<lna-$\frac{{a}^{2}}{2}$+$\frac{1}{2}$,
令h(a)=lna-$\frac{{a}^{2}}{2}$+$\frac{1}{2}$,(a>2),h′(a)=$\frac{1}{a}$-a<0,
故h(a)在(2,+∞)递减,h(a)<h(2)=ln2-$\frac{3}{2}$<0,
故a>2时,f(x)的极小值小于0,
故B正确;
(3)a=2时,f(x)=lnx+$\frac{1}{2}$x2-2x+1,
f′(x)=$\frac{{(x-1)}^{2}}{x}$≥0,f(x)递增,无极值点,
故C错误;
(4)x→0时,f(x)→-∞,
x→+∞时,f(x)→+∞,
显然f(x)有零点,
故D正确;
故选;C.

点评 本题考查了函数的单调性、极值问题,考查导数的应用以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.空间几何体ABCDEF如图所示.已知面ABCD⊥面ADEF,ABCD为梯形,ADEF为正方形,且AB∥CD,AB⊥AD,CD=4,AB=AD=2,G为CE的中点.
(Ⅰ)求证:BG∥面ADEF;
(Ⅱ)求证:面DBG⊥面BDF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知抛物线C:y2=4x的焦点为F,过点F的动直线交抛物线C于A、B两点,则原点P到直线l的距离最大时,弦AB的长度为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.满足{2,3}⊆M⊆{1,2,3,4,5}的集合M的个数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数$y=\sqrt{{{log}_{\frac{1}{3}}}(3x-8)}$的定义域为($\frac{8}{3}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}是公比为q(q>1)的等比数列,其前n项和为Sn.已知S3=7,且3a2是a1+3与a3+4的等差数列.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)设bn=$\frac{1}{lo{g}_{2}{a}_{n+1}}$,cn=bn(bn+1-bn+2),求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系xOy中,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点$(2,\sqrt{6})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程.
(2)求证:AP⊥OM.
(3)试问:$\overrightarrow{OP}$•$\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数①y=2x;②y=log2x;③y=x-1;④y=$\sqrt{x}$,则下列函数图象(在第一象限部分)从左到右依次与函数序号的正确对应顺序是(  )
A.②①③④B.②③①④C.④①③②D.④③①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,ABCD是正方形,O是该正方体的中心,P是平面ABCD外一点,PO⊥平面ABCD,E是PC的中点.
(1)求证:PA∥平面BDE;
(2)求证:BD⊥平面PAC.

查看答案和解析>>

同步练习册答案