精英家教网 > 高中数学 > 题目详情
12.已知抛物线C:y2=4x的焦点为F,过点F的动直线交抛物线C于A、B两点,则原点P到直线l的距离最大时,弦AB的长度为(  )
A.1B.2C.4D.8

分析 由题意,原点P到直线l的距离最大时,AB⊥x轴,求出焦点坐标,即可得出结论.

解答 解:由题意,原点P到直线l的距离最大时,AB⊥x轴,
F(1,0),x=1时,y=±2,∴弦AB的长度为4,
故选:C.

点评 本题考查直线与抛物线的位置关系,考查弦长的计算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=m,|$\overrightarrow{a}$+$\overrightarrow{b}$|=2.
(1)若|$\overrightarrow{a}$+2$\overrightarrow{b}$|=3,求实数m的值;
(2)若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}\frac{1}{4}x+1,\;x≤1\\ lnx,x>1\end{array}\right.$,
①方程f(x)=-x有1个根;
②若方程f(x)=ax恰有两个不同实数根,则实数a的取值范围是$[\frac{1}{4},\frac{1}{e})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),在以原点为极点,X轴正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$.
(1)求C的普通方程和l的倾斜角;
(2)若l和C交于A,B两点,且Q(2,3),求|QA|+|QB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x+$\frac{1}{|x|}$.
(1)求解不等式f(x)≥2x;
(2)$\frac{1}{{x}^{2}}$+x2+2mf(x)≥0在x∈[1,2]上恒成立,求m的取值范围;
(3)设函数g(x)=x2+(-3+c)x+c2,若方程g(f(x))=0有6个实根,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:若m>0,则关于 x的方程x2+x-m=0有实根,q是p的逆命题,下面结论正确的是(  )
A.p真q假B.p 假q真C.p真q真D.p 假q假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个圆锥的表面积为6π(单位:m2),且它的侧面展开图是一个半圆,则圆锥的底面半径为(  )(单位:m)
A.$\frac{1}{2}$B.$\sqrt{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=lnx+\frac{1}{2}{x^2}-ax+1$,下列结论中错误的是(  )
A.当-2<a<2时,函数f(x)无极值B.当a>2时,f(x)的极小值小于0
C.当a=2时,x=1是f(x)的一个极值点D.?a∈R,f(x)必有零点

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知空间四边形OABC,如图所示,其对角线为OB、AC,M、N分别为OA、BC的中点,点G在线段MN上,且$\overrightarrow{MG}$=3$\overrightarrow{GN}$,现用基向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$表示向量$\overrightarrow{OG}$,并设$\overrightarrow{OG}$=x•$\overrightarrow{OA}$+y•$\overrightarrow{OB}$+z•$\overrightarrow{OC}$,则x、y、z的和为$\frac{7}{8}$.

查看答案和解析>>

同步练习册答案