精英家教网 > 高中数学 > 题目详情
15.将下列指数式化为对数式,对数式化为指数式:
(1)102=100;
(2)lna=b;
(3)73=343;
(4)log6$\frac{1}{36}$=-2.

分析 根据对数的定义进行转化.

解答 解:(1)lg100=2,
(2)eb=a,
(3)log7343=3;
(4)6-2=$\frac{1}{36}$.

点评 本题考查了对数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.执行如图所示的程序框图,若输入a=7,b=1,则输出S的值为(  )
A.16B.19C.34D.50

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)是定义在R上的奇函数,当x∈(0,+∞)时,f(x)=-x(x+1).若f(m2-m)>f(2),则m的取值范围是(-1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.下图为函数y=Asin(ωx+φ)的一段图象,已知A>0,ω>0,φ∈(-$\frac{π}{2}$,$\frac{π}{2}$).
(1)写出函数y的解析式;
(2)若函数y=g(x)与y=Asin(ωx+φ)的图象关于直线x=2对称,求y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.执行如图所示的程序框图,则输出的结果是(  )
A.$\frac{19}{20}$B.$\frac{20}{21}$C.$\frac{21}{22}$D.$\frac{22}{23}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用反正弦形式表示下列各角.
(1)sinx=-$\frac{1}{4}$,x∈(π,$\frac{3π}{2}$);
(2)sinx=a,a∈(-1,0),x∈[π,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin2θ+sinθ=0,θ∈($\frac{π}{2}$,π),则tan2θ=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设袋中有4个白球,2个红球,若无放回地抽取3次,每次抽取一球,求:
(1)第一次是白球的情况下,第二次与第三次均是白球的概率.
(2)第一次和第二次均取白球的情况下,第三次是白球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若△ABC的内角为A,B,C,且sinA,sinC,$\sqrt{2}$sinB为等差数列,则cosC的最小值是$\frac{\sqrt{6}-\sqrt{2}}{4}$.

查看答案和解析>>

同步练习册答案