分析 由正弦定理可知,$\frac{a-b}{a+b}$=$\frac{sinA-sinB}{sinA+sinB}$,代值计算即可.
解答 解:在△ABC中,若A=45°,B=60°
由正弦定理可知,$\frac{a-b}{a+b}$=$\frac{sinA-sinB}{sinA+sinB}$=$\frac{\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}$=2$\sqrt{6}$-5.
故答案为:2$\sqrt{6}$-5.
点评 本题考查了正弦定理和特殊角的三角函数值,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com